
INTEL® OPEN IMAGE DENOISE
HIGH-PERFORMANCE DENOISING LIBRARY
FOR RAY TRACING
Version 1.0.0
July 19, 2019

2

Contents

1 Open Image Denoise Overview 3
1.1 Support and Contact . 3
1.2 Version History . 4

2 Building Open Image Denoise from Source 6
2.1 Prerequisites . 6
2.2 Compiling Open Image Denoise on Linux/macOS 7
2.3 Compiling Open Image Denoise on Windows 7
2.4 CMake Configuration . 8

3 Open Image Denoise API 9
3.0.1 C99 API Example . 9
3.0.2 C++11 API Example . 10

3.1 Device . 10
3.1.1 Error Handling . 12

3.2 Buffer . 13
3.2.1 Data Format . 14

3.3 Filter . 14
3.3.1 RT . 15

4 Examples 20
4.1 Denoise . 20

3

Chapter 1
Open ImageDenoiseOverview

Intel® Open Image Denoise is an open source library of high-performance, high-
quality denoising filters for images rendered with ray tracing. Open Image De-
noise is part of the Intel Rendering Framework and is released under the permis-
sive Apache 2.0 license.

The purpose of Open Image Denoise is to provide an open, high-quality, ef-
ficient, and easy-to-use denoising library that allows one to significantly reduce
rendering times in ray tracing based rendering applications. It filters out the
Monte Carlo noise inherent to stochastic ray tracing methods like path tracing,
reducing the amount of necessary samples per pixel by even multiple orders of
magnitude (depending on the desired closeness to the ground truth). A simple
but flexible C/C++ API ensures that the library can be easily integrated into most
existing or new rendering solutions.

At the heart of the Open Image Denoise library is an efficient deep learning
based denoising filter, which was trained to handle a wide range of samples per
pixel (spp), from 1 spp to almost fully converged. Thus it is suitable for both
preview and final-frame rendering. The filters can denoise images either using
only the noisy color (beauty) buffer, or, to preserve as much detail as possible,
can optionally utilize auxiliary feature buffers as well (e.g. albedo, normal). Such
buffers are supported by most renderers as arbitrary output variables (AOVs) or
can be usually implemented with little effort.

Open Image Denoise supports Intel® 64 architecture based CPUs and com-
patible architectures, and runs on anything from laptops, to workstations, to
compute nodes in HPC systems. It is efficient enough to be suitable not only for
offline rendering, but, depending on the hardware used, also for interactive ray
tracing.

Open Image Denoise internally builds on top of Intel® Math Kernel Library
for Deep Neural Networks (MKL-DNN), and automatically exploits modern in-
struction sets like Intel SSE4, AVX2, and AVX-512 to achieve high denoising per-
formance. A CPU with support for at least SSE4.1 is required to run Open Image
Denoise.

Support and Contact
Open Image Denoise is under active development, and though we do our best
to guarantee stable release versions a certain number of bugs, as-yet-missing
features, inconsistencies, or any other issues are still possible. Should you find
any such issues please report them immediately via the Open Image Denoise
GitHub Issue Tracker (or, if you should happen to have a fix for it, you can
also send us a pull request); for missing features please contact us via email at
openimagedenoise@googlegroups.com.

https://software.intel.com/en-us/rendering-framework
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://github.com/OpenImageDenoise/oidn/issues
https://github.com/OpenImageDenoise/oidn/issues
mailto:openimagedenoise@googlegroups.com

Open Image Denoise Overview 4

For recent news, updates, and announcements, please see our complete
news/updates page.

Join our mailing list to receive release announcements and major news re-
garding Open Image Denoise.

Version History

Changes in v1.0.0:
• Improved denoising quality

– More details preserved
– Less artifacts (e.g. noisy spots, color bleeding with albedo/normal)

• Added maxMemoryMB filter parameter for limiting the maximum memory
consumption regardless of the image resolution, potentially at the cost of
lower denoising speed. This is internally implemented by denoising the
image in tiles

• Significantly reduced memory consumption (but slightly lower perfor-
mance) for high resolutions (> 2K) by default: limited to about 6 GB

• Added alignment and overlap filter parameters that can be queried for
manual tiled denoising

• Added verbose device parameter for setting the verbosity of the console
output, and disabled all console output by default

• Fixed crash for zero-sized images

Changes in v0.9.0:
• Reduced memory consumption by about 38%
• Added support for progress monitor callback functions
• Enabled fully concurrent execution when using multiple devices
• Clamp LDR input and output colors to 1
• Fixed issue where some memory allocation errors were not reported

Changes in v0.8.2:
• Fixed wrong HDR output when the input contains infinities/NaNs
• Fixed wrong output when multiple filters were executed concurrently on
separate devices with AVX-512 support. Currently the filter executions are
serialized as a temporary workaround, and a full fix will be included in a
future release.

• Added OIDN_STATIC_LIB CMake option for building as a static library
(requires CMake 3.13.0 or later)

• Fixed CMake error when adding the library with add_subdirectory() to a
project

Changes in v0.8.1:
• Fixed wrong path to TBB in the generated CMake configs
• Fixed wrong rpath in the binaries
• Fixed compile error on some macOS systems
• Fixed minor compile issues with Visual Studio
• Lowered the CPU requirement to SSE4.1
• Minor example update

https://openimagedenoise.github.io/news.html
https://groups.google.com/d/forum/openimagedenoise/

Open Image Denoise Overview 5

Changes in v0.8.0:
• Initial beta release

6

Chapter 2
BuildingOpen ImageDenoise
from Source

The latest Open Image Denoise sources are always available at the Open Image
Denoise GitHub repository. The default master branch should always point to
the latest tested bugfix release.

Prerequisites
Open Image Denoise currently supports 64-bit Linux, Windows, and macOS op-
erating systems. In addition, before you can build Open Image Denoise you need
the following prerequisites:

• You can clone the latest Open Image Denoise sources via:

git clone --recursive https://github.com/OpenImageDenoise/oidn.git

• To build Open Image Denoise you need CMake 3.1 or later, a C++11 com-
piler (we recommend using Clang, but also support GCC, Microsoft Visual
Studio 2015 or later, and Intel® C++ Compiler 17.0 or later), and Python
2.7 or later.

• Additionally you require a copy of Intel® Threading Building Blocks (TBB)
2017 or later.

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev

Under macOS these dependencies can be installed using MacPorts:

sudo port install cmake tbb

UnderWindows please directly use the appropriate installers or packages for
CMake, Python, and TBB.

http://github.com/OpenImageDenoise/oidn
http://github.com/OpenImageDenoise/oidn
http://www.cmake.org
https://software.intel.com/en-us/c-compilers
https://www.threadingbuildingblocks.org/
http://www.macports.org/
https://cmake.org/download/
https://www.python.org/downloads/
https://github.com/01org/tbb/releases

Building Open Image Denoise from Source 7

Compiling Open Image Denoise on Linux/macOS
Assuming the above prerequisites are all fulfilled, building Open Image Denoise
through CMake is easy:

• Create a build directory, and go into it

mkdir oidn/build
cd oidn/build

(We do recommend having separate build directories for different configu-
rations such as release, debug, etc.).

• The compiler CMake will use by default will be whatever the CC and CXX
environment variables point to. Should you want to specify a different
compiler, run cmake manually while specifying the desired compiler. The
default compiler on most Linux machines is gcc, but it can be pointed to
clang instead by executing the following:

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

CMake will now use Clang instead of GCC. If you are OK with using the
default compiler on your system, then simply skip this step. Note that the
compiler variables cannot be changed after the first cmake or ccmake run.

• Open the CMake configuration dialog

ccmake ..

• Make sure to properly set the build mode and enable the components you
need, etc.; then type ’c’onfigure and ’g’enerate. When back on the com-
mand prompt, build it using

make

• You should now have libOpenImageDenoise.so as well as a set of exam-
ple applications.

Compiling Open Image Denoise on Windows
On Windows using the CMake GUI (cmake-gui.exe) is the most convenient
way to configure Open Image Denoise and to create the Visual Studio solution
files:

• Browse to the Open Image Denoise sources and specify a build directory
(if it does not exist yet CMake will create it).

• Click “Configure” and select as generator the Visual Studio version you
have (Open Image Denoise needs Visual Studio 14 2015 or newer), for
Win64 (32-bit builds are not supported), e.g., “Visual Studio 15 2017Win64”.

• If the configuration fails because some dependencies could not be found
then follow the instructions given in the errormessage, e.g., set the variable
TBB_ROOT to the folder where TBB was installed.

• Optionally change the default build options, and then click “Generate” to
create the solution and project files in the build directory.

• Open the generated OpenImageDenoise.sln in Visual Studio, select the
build configuration and compile the project.

Building Open Image Denoise from Source 8

Alternatively, Open Image Denoise can also be built without any GUI, en-
tirely on the console. In the Visual Studio command prompt type:

cd path\to\oidn
mkdir build
cd build
cmake -G "Visual Studio 15 2017 Win64" [-D VARIABLE=value] ..
cmake --build . --config Release

Use -D to set variables for CMake, e.g., the path to TBB with “-D TBB_
ROOT=\path\to\tbb”.

CMake Configuration
The default CMake configuration in the configuration dialog should be appropri-
ate for most usages. The following list describes the options that can be config-
ured in CMake:

• CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Releasemode (Release) (default), and Releasemodewith enabled assertions
and debug symbols (RelWithDebInfo).

• OIDN_STATIC_LIB: Builds Open Image Denoise as a static library (OFF by
default). CMake 3.13.0 or later is required to enable this option. When
using the statically compiled Open Image Denoise library, you either have
to use the generated CMake configuration files (recommended), or you
have to manually define OIDN_STATIC_LIB before including the library
headers in your application.

• TBB_ROOT: The path to the TBB installation (autodetected by default).

9

Chapter 3
Open Image Denoise API

Open Image Denoise provides a C99 API (also compatible with C++) and a C++11
wrapper API as well. For simplicity, this document mostly refers to the C99
version of the API.

The API is designed in an object-oriented manner, e.g. it contains device ob-
jects (OIDNDevice type), buffer objects (OIDNBuffer type), and filter objects
(OIDNFilter type). All objects are reference-counted, and handles can be re-
leased by calling the appropriate release function (e.g. oidnReleaseDevice) or
retained by incrementing the reference count (e.g. oidnRetainDevice).

An important aspect of objects is that setting their parameters do not have
an immediate effect (with a few exceptions). Instead, objects with updated pa-
rameters are in an unusable state until the parameters get explicitly committed
to a given object. The commit semantic allows for batching up multiple small
changes, and specifies exactly when changes to objects will occur.

All API calls are thread-safe, but operations that use the same device will be
serialized, so the amount of API calls from different threads should be minimized.

To have a quick overview of the C99 andC++11APIs, see the following simple
example code snippets.

C99 API Example
#include <OpenImageDenoise/oidn.h>
...
// Create an Open Image Denoise device
OIDNDevice device = oidnNewDevice(OIDN_DEVICE_TYPE_DEFAULT);
oidnCommitDevice(device);

// Create a denoising filter
OIDNFilter filter = oidnNewFilter(device, "RT"); // generic ray tracing filter
oidnSetSharedFilterImage(filter, "color", colorPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0);
oidnSetSharedFilterImage(filter, "albedo", albedoPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // optional
oidnSetSharedFilterImage(filter, "normal", normalPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // optional
oidnSetSharedFilterImage(filter, "output", outputPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0);
oidnSetFilter1b(filter, "hdr", true); // image is HDR
oidnCommitFilter(filter);

// Filter the image
oidnExecuteFilter(filter);

Open Image Denoise API 10

// Check for errors
const char* errorMessage;
if (oidnGetDeviceError(device, &errorMessage) != OIDN_ERROR_NONE)
printf("Error: %s\n", errorMessage);

// Cleanup
oidnReleaseFilter(filter);
oidnReleaseDevice(device);

C++11 API Example
#include <OpenImageDenoise/oidn.hpp>
...
// Create an Open Image Denoise device
oidn::DeviceRef device = oidn::newDevice();
device.commit();

// Create a denoising filter
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorPtr, oidn::Format::Float3, width, height);
filter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height); // optional
filter.setImage("normal", normalPtr, oidn::Format::Float3, width, height); // optional
filter.setImage("output", outputPtr, oidn::Format::Float3, width, height);
filter.set("hdr", true); // image is HDR
filter.commit();

// Filter the image
filter.execute();

// Check for errors
const char* errorMessage;
if (device.getError(errorMessage) != oidn::Error::None)
std::cout << "Error: " << errorMessage << std::endl;

Device
Open Image Denoise supports a device concept, which allows different compo-
nents of the application to use the Open Image Denoise API without interfering
with each other. An application first needs to create a device with

OIDNDevice oidnNewDevice(OIDNDeviceType type);

where the type enumeration maps to a specific device implementation,
which can be one of the following:

Name Description

OIDN_DEVICE_TYPE_DEFAULT select the approximately fastest device
OIDN_DEVICE_TYPE_CPU CPU device (requires SSE4.1 support)

Table 3.1 – Supported device types, i.e.,
valid constants of type OIDNDevice-
Type.

Once a device is created, you can call

void oidnSetDevice1b(OIDNDevice device, const char* name, bool value);
void oidnSetDevice1i(OIDNDevice device, const char* name, int value);
bool oidnGetDevice1b(OIDNDevice device, const char* name);
int oidnGetDevice1i(OIDNDevice device, const char* name);

Open Image Denoise API 11

to set and get parameter values on the device. Note that some parameters
are constants, thus trying to set them is an error. See the tables below for the
parameters supported by devices.

Table 3.2 – Parameters supported by all devices.

Type Name Default Description

const int version combined version number (major.minor.patch) with two decimal digits per
component

const int versionMajor major version number
const int versionMinor minor version number
const int versionPatch patch version number
int verbose 0 verbosity level of the console output between 0–3; when set to 0, no output is

printed, when set to a higher level more output is printed

Table 3.3 – Additional parameters supported only by CPU devices.

Type Name Default Description

int numThreads 0 maximum number of threads which Open Image Denoise should use; 0 will set it
automatically to get the best performance

bool setAffinity true bind software threads to hardware threads if set to true (improves performance);
false disables binding

Note that the CPU device heavily relies on setting the thread affinities to
achieve optimal performance, so it is highly recommended to leave this option
enabled. However, this may interfere with the application if that also sets the
thread affinities, potentially causing performance degradation. In such cases, the
recommended solution is to either disable setting the affinities in the application
or in Open Image Denoise, or to always set/reset the affinities before/after each
parallel region in the application (e.g., if using TBB, with tbb::task_arena and
tbb::task_scheduler_observer).

Once parameters are set on the created device, the device must be committed
with

void oidnCommitDevice(OIDNDevice device);

This device can then be used to construct further objects, such as buffers and
filters. Note that a device can be committed only once during its lifetime. Before
the application exits, it should release all devices by invoking

void oidnReleaseDevice(OIDNDevice device);

Note that Open Image Denoise uses reference counting for all object types,
so this function decreases the reference count of the device, and if the count
reaches 0 the device will automatically get deleted. It is also possible to increase
the reference count by calling

void oidnRetainDevice(OIDNDevice device);

An application typically creates only a single device. If required differently,
it should only use a small number of devices at any given time.

Open Image Denoise API 12

Error Handling
Each user thread has its own error code per device. If an error occurs when
calling an API function, this error code is set to the occurred error if it stores no
previous error. The currently stored error can be queried by the application via

OIDNError oidnGetDeviceError(OIDNDevice device, const char** outMessage);

where outMessage can be a pointer to a C string which will be set to a more
descriptive error message, or it can be NULL. This function also clears the error
code, which assures that the returned error code is always the first error occurred
since the last invocation of oidnGetDeviceError on the current thread. Note
that the optionally returned error message string is valid only until the next in-
vocation of the function.

Alternatively, the application can also register a callback function of type

typedef void (*OIDNErrorFunction)(void* userPtr, OIDNError code, const char* message);

via

void oidnSetDeviceErrorFunction(OIDNDevice device, OIDNErrorFunction func, void* userPtr);

to get notified when errors occur. Only a single callback function can be
registered per device, and further invocations overwrite the previously set call-
back function, which do not require also calling the oidnCommitDevice function.
Passing NULL as function pointer disables the registered callback function. When
the registered callback function is invoked, it gets passed the user-defined pay-
load (userPtr argument as specified at registration time), the error code (code
argument) of the occurred error, as well as a string (message argument) that fur-
ther describes the error. The error code is always set even if an error callback
function is registered. It is recommended to always set a error callback function,
to detect all errors.

When the device construction fails, oidnNewDevice returns NULL as device.
To detect the error code of a such failed device construction, pass NULL as device
to the oidnGetDeviceError function. For all other invocations of oidnGetDe-
viceError, a proper device handle must be specified.

The following errors are currently used by Open Image Denoise:

Table 3.4 – Possible error codes, i.e., valid constants of type OIDNError.

Name Description

OIDN_ERROR_NONE no error occurred
OIDN_ERROR_UNKNOWN an unknown error occurred
OIDN_ERROR_INVALID_ARGUMENT an invalid argument was specified
OIDN_ERROR_INVALID_OPERATION the operation is not allowed
OIDN_ERROR_OUT_OF_MEMORY not enough memory to execute the operation
OIDN_ERROR_UNSUPPORTED_HARDWARE the hardware (e.g., CPU) is not supported
OIDN_ERROR_CANCELLED the operation was cancelled by the user

Open Image Denoise API 13

Buffer
Large data like images can be passed to Open Image Denoise either via pointers
to memory allocated and managed by the user (this is the recommended, often
easier and more efficient approach, if supported by the device) or by creating
buffer objects (supported by all devices). To create a new data buffer with mem-
ory allocated and owned by the device, holding byteSize number of bytes, use

OIDNBuffer oidnNewBuffer(OIDNDevice device, size_t byteSize);

The created buffer is bound to the specified device (device argument). The
specified number of bytes are allocated at buffer construction time and deallo-
cated when the buffer is destroyed.

It is also possible to create a “shared” data buffer with memory allocated and
managed by the user with

OIDNBuffer oidnNewSharedBuffer(OIDNDevice device, void* ptr, size_t byteSize);

where ptr points to the user-managed memory and byteSize is its size in
bytes. At buffer construction time no buffer data is allocated, but the buffer data
provided by the user is used. The buffer data must remain valid for as long as
the buffer may be used, and the user is responsible to free the buffer data when
no longer required.

Similar to device objects, buffer objects are also reference-counted and can
be retained and released by calling the following functions:

void oidnRetainBuffer(OIDNBuffer buffer);
void oidnReleaseBuffer(OIDNBuffer buffer);

Accessing the data stored in a buffer object is possible by mapping it into the
address space of the application using

void* oidnMapBuffer(OIDNBuffer buffer, OIDNAccess access, size_t byteOffset, size_t byteSize)

where access is the desired access mode of the mapped memory, byte-
Offset is the offset to the beginning of the mapped memory region in bytes,
and byteSize is the number of bytes to map. The function returns a pointer to
the mapped buffer data. If the specified byteSize is 0, the maximum available
amount of memory will be mapped. The access argument must be one of the
access modes in the following table:

Name Description

OIDN_ACCESS_READ read-only access
OIDN_ACCESS_WRITE write-only access
OIDN_ACCESS_READ_WRITE read and write access
OIDN_ACCESS_WRITE_DISCARD write-only access but the previous

contents will be discarded

Table 3.5 – Access modes for memory
regions mapped with oidnMapBuffer,
i.e., valid constants of type OIDNAccess.

After accessing the mapped data in the buffer, the memory region must be
unmapped with

void oidnUnmapBuffer(OIDNBuffer buffer, void* mappedPtr);

where mappedPtrmust be a pointer returned by a call to oidnMapBuffer for
the specified buffer. Any change to the mapped data is guaranteed to take effect
only after unmapping the memory region.

Open Image Denoise API 14

Data Format
Buffers store opaque data and thus have no information about the type and for-
mat of the data. Other objects, e.g. filters, typically require specifying the format
of the data stored in buffers or shared via pointers. This can be done using the
OIDNFormat enumeration type:

Name Description

OIDN_FORMAT_UNDEFINED undefined format
OIDN_FORMAT_FLOAT 32-bit single-precision floating point scalar
OIDN_FORMAT_FLOAT[234] … and [234]-element vector

Table 3.6 – Supported data formats, i.e.,
valid constants of type OIDNFormat.

Filter
Filters are themain objects in Open Image Denoise that are responsible for the ac-
tual denoising. The library ships with a collection of filters which are optimized
for different types of images and use cases. To create a filter object, call

OIDNFilter oidnNewFilter(OIDNDevice device, const char* type);

where type is the name of the filter type to create. The supported filter types
are documented later in this section. Once created, filter objects can be retained
and released with

void oidnRetainFilter(OIDNFilter filter);
void oidnReleaseFilter(OIDNFilter filter);

After creating a filter, it needs to be set up by specifying the input and output
image buffers, and potentially setting other parameter values as well.

To bind image buffers to the filter, you can use one of the following functions:

void oidnSetFilterImage(OIDNFilter filter, const char* name,
OIDNBuffer buffer, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

void oidnSetSharedFilterImage(OIDNFilter filter, const char* name,
void* ptr, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

It is possible to specify either a data buffer object (buffer argument) with
the oidnSetFilterImage function, or directly a pointer to shared user-managed
data (ptr argument) with the oidnSetSharedFilterImage function.

In both cases, you must also specify the name of the image parameter to set
(name argument, e.g. "color", "output"), the pixel format (format argument),
the width and height of the image in number of pixels (width and height argu-
ments), the starting offset of the image data (byteOffset argument), the pixel
stride (bytePixelStride argument) and the row stride (byteRowStride argu-
ment), in number of bytes. Note that the row stride must be an integer multiple
of the pixel stride.

Open Image Denoise API 15

If the pixels and/or rows are stored contiguously (tightly packed without any
gaps), you can set bytePixelStride and/or byteRowStride to 0 to let the li-
brary compute the actual strides automatically, as a convenience.

Filters may have parameters other than buffers as well, which you can set
and get using the following functions:

void oidnSetFilter1b(OIDNFilter filter, const char* name, bool value);
void oidnSetFilter1i(OIDNFilter filter, const char* name, int value);
bool oidnGetFilter1b(OIDNFilter filter, const char* name);
int oidnGetFilter1i(OIDNFilter filter, const char* name);

Filters support a progress monitor callback mechanism that can be used to
report progress of filter operations and to cancel them as well. Calling oidnSet-
FilterProgressMonitorFunction registers a progress monitor callback func-
tion (func argument) with payload (userPtr argument) for the specified filter
(filter argument):

typedef bool (*OIDNProgressMonitorFunction)(void* userPtr, double n);

void oidnSetFilterProgressMonitorFunction(OIDNFilter filter,
OIDNProgressMonitorFunction func,
void* userPtr);

Only a single callback function can be registered per filter, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function. Once registered, Open Image
Denoise will invoke the callback function multiple times during filter operations,
by passing the payload as set at registration time (userPtr argument), and a
double in the range [0, 1] which estimates the progress of the operation (n argu-
ment). When returning true from the callback function, Open Image Denoise
will continue the filter operation normally. When returning false, the library
will cancel the filter operation with the OIDN_ERROR_CANCELLED error code.

After setting all necessary parameters for the filter, the changes must be com-
mmitted by calling

void oidnCommitFilter(OIDNFilter filter);

The parameters can be updated after committing the filter, but it must be
re-committed for the changes to take effect.

Finally, an image can be filtered by executing the filter with

void oidnExecuteFilter(OIDNFilter filter);

which will read the input image data from the specified buffers and produce
the denoised output image.

In the following we describe the different filters that are currently imple-
mented in Open Image Denoise.

RT
The RT (ray tracing) filter is a generic ray tracing denoising filter which is suitable
for denoising images rendered with Monte Carlo ray tracing methods like uni-
directional and bidirectional path tracing. It supports depth of field and motion
blur as well, but it is not temporally stable. The filter is based on a deep learn-
ing based denoising algorithm, and it aims to provide a good balance between
denoising performance and quality for a wide range of samples per pixel.

It accepts either a low dynamic range (LDR) or high dynamic range (HDR)
color image as input. Optionally, it also accepts auxiliary feature images, e.g.

Open Image Denoise API 16

albedo and normal, which improve the denoising quality, preservingmore details
in the image.

The RT filter has certain limitations regarding the supported input images.
Most notably, it cannot denoise images that were not rendered with ray trac-
ing. Another important limitation is related to anti-aliasing filters. Most render-
ers use a high-quality pixel reconstruction filter instead of a trivial box filter to
minimize aliasing artifacts (e.g. Gaussian, Blackman-Harris). The RT filter does
support such pixel filters but only if implemented with importance sampling.
Weighted pixel sampling (sometimes called splatting) introduces correlation be-
tween neighboring pixels, which causes the denoising to fail (the noise will not
be filtered), thus it is not supported.

The filter can be created by passing "RT" to the oidnNewFilter function as
the filter type. The filter supports the following parameters:

Table 3.7 – Parameters supported by the RT filter.

Type Format Name Default Description

Image float3 color input color image (LDR values in [0, 1] or HDR values in [0, +∞))
Image float3 albedo input feature image containing the albedo (values in [0, 1]) of the

first hit per pixel; optional
Image float3 normal input feature image containing the shading normal (world-space

or view-space, arbitrary length, values in (−∞, +∞)) of the first
hit per pixel; optional, requires setting the albedo image too

Image float3 output output image; can be one of the input images
bool hdr false whether the color is HDR
bool srgb false whether the color is encoded with the sRGB (or 2.2 gamma)

curve (LDR only) or is linear; the output will be encoded with the
same curve

int maxMemoryMB 6000 approximate maximum amount of memory to use in megabytes
(actual memory usage may be higher); limiting memory usage
may cause slower denoising due to internally splitting the image
into overlapping tiles, but cannot cause the denoising to fail

const int alignment when manually denoising the image in tiles, the tile size and
offsets should be multiples of this amount of pixels to avoid
artifacts; note that manual tiled denoising is supported only for
LDR images

const int overlap when manually denoising the image in tiles, the tiles should
overlap by this amount of pixels

All specified images must have the same dimensions.
Using auxiliary feature images like albedo and normal helps preserving fine

details and textures in the image thus can significantly improve denoising qual-
ity. These images should typically contain feature values for the first hit (i.e. the
surface which is directly visible) per pixel. This works well for most surfaces but
does not provide any benefits for reflections and objects visible through trans-
parent surfaces (compared to just using the color as input). However, in certain
cases this issue can be fixed by storing feature values for a subsequent hit (i.e. the
reflection and/or refraction) instead of the first hit. For example, it usually works
well to follow perfect specular (delta) paths and store features for the first diffuse
or glossy surface hit instead (e.g. for perfect specular dielectrics and mirrors).
This can greatly improve the quality of reflections and transmission. We will
describe this approach in more detail in the following subsections.

The auxiliary feature images should be as noise-free as possible. It is not a

Open Image Denoise API 17

Figure 3.1 – Example noisy color image
rendered using unidirectional path trac-
ing (512 spp). Scene by Evermotion.

Figure 3.2 – Example output image de-
noised using color and auxiliary feature
images (albedo and normal).

strict requirement but too much noise in the feature images may cause residual
noise in the output. Also, all feature images should use the same pixel recon-
struction filter as the color image. Using a properly anti-aliased color image but
aliased albedo or normal images will likely introduce artifacts around edges.

Albedo

The albedo image is the feature image that usually provides the biggest quality
improvement. It should contain the approximate color of the surfaces indepen-
dent of illumination and viewing angle.

For simple matte surfaces this means using the diffuse color/texture as the
albedo. For other, more complex surfaces it is not always obvious what is the best
way to compute the albedo, but the denoising filter is flexibile to a certain extent
and works well with differently computed albedos. Thus it is not necessary to
compute the strict, exact albedo values but must be always between 0 and 1.

For metallic surfaces the albedo should be either the reflectivity at normal
incidence (e.g. from the artist friendly metallic Fresnel model) or the average
reflectivity; or if these are constant (not textured) or unknown, the albedo can
be simply 1 as well.

The albedo for dielectric surfaces (e.g. glass) should be either 1 or, if the sur-
face is perfect specular (i.e. has a delta BSDF), the Fresnel blend of the reflected
and transmitted albedos (as previously discussed). The latter usually works bet-
ter but only if it does not introduce too much additional noise due to random
sampling. Thus we recommend to split the path into a reflected and a transmit-
ted path at the first hit, and perhaps fall back to an albedo of 1 for subsequent
dielectric hits, to avoid noise. The reflected albedo in itself can be used formirror-

Open Image Denoise API 18

Figure 3.3 – Example albedo image ob-
tained using the first hit. Note that the
albedos of all transparent surfaces are 1.

Figure 3.4 – Example albedo image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the albedos of
perfect specular (delta) transparent sur-
faces are computed as the Fresnel blend
of the reflected and transmitted albedos.

like surfaces as well.
The albedo for layered surfaces can be computed as the weighted sum of the

albedos of the individual layers. Non-absorbing clear coat layers can be simply
ignored (or the albedo of the perfect specular reflection can be used as well) but
absorption should be taken into account.

Normal

The normal image should contain the shading normals of the surfaces either in
world-space or view-space. It is recommended to include normal maps to pre-
serve as much detail as possible.

Just like any other input image, the normal image should be anti-aliased (i.e.
by accumulating the normalized normals per pixel). The final accumulated nor-
mals do not have to be normalized but must be in a range symmetric about 0
(i.e. normals mapped to [0, 1] are not acceptable andmust be remapped to e.g. [−1,
1]).

Similar to the albedo, the normal can be stored for either the first or a subse-
quent hit (if the first hit has a perfect specular/delta BSDF).

Open Image Denoise API 19

Figure 3.5 – Example normal image ob-
tained using the first hit (the values are
actually in [−1, 1] but were mapped to
[0, 1] for illustration purposes).

Figure 3.6 – Example normal image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the normals
of perfect specular (delta) transparent
surfaces are computed as the Fresnel
blend of the reflected and transmitted
normals.

20

Chapter 4
Examples

Denoise
A minimal working example demonstrating how to use Open Image Denoise
can be found at examples/denoise.cpp, which uses the C++11 convenience
wrappers of the C99 API.

This example is a simple command-line application that denoises the pro-
vided image, which can optionally have auxiliary feature images aswell (e.g. albedo
and normal). The images must be stored in the Portable FloatMap (PFM) format,
and the color values must be encoded in little-endian format.

Running ./denoise without any arguments will bring up a list of command
line options.

http://www.pauldebevec.com/Research/HDR/PFM/

Examples 21

© 2018–2019 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

OptimizationNotice: Intel’s compilersmay ormay not optimize to the same degree for non-Intelmicroprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

	Open Image Denoise Overview
	Support and Contact
	Version History

	Building Open Image Denoise from Source
	Prerequisites
	Compiling Open Image Denoise on Linux/macOS
	Compiling Open Image Denoise on Windows
	CMake Configuration

	Open Image Denoise API
	C99 API Example
	C++11 API Example

	Device
	Error Handling

	Buffer
	Data Format

	Filter
	RT

	Examples
	Denoise

